




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省淮安市重點達標名校2025屆初三全真四模數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)2.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥33.為了支援地震災區同學,某校開展捐書活動,九(1)班40名同學積極參與.現將捐書數量繪制成頻數分布直方圖如圖所示,則捐書數量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.44.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,5.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+96.四根長度分別為3,4,6,x(x為正整數)的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為167.的值為()A. B.- C.9 D.-98.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.9.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=410.如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°二、填空題(本大題共6個小題,每小題3分,共18分)11.按照神舟號飛船環境控制與生命保障分系統的設計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.12.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.13.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點D,以點D為圓心作⊙D,使得點A在⊙D外,且點B在⊙D內.設⊙D的半徑為r,那么r的取值范圍是_________.14.一機器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機器人從開始到停止所需時間為__s.15.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.16.如圖,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點旋轉60°叫一次操作,則經過6次這樣的操作菱形中心(對角線的交點)O所經過的路徑總長為_____.三、解答題(共8題,共72分)17.(8分)計算:4cos30°﹣+20180+|1﹣|18.(8分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.19.(8分)在某校舉辦的2012年秋季運動會結束之后,學校需要為參加運動會的同學們發紀念品.小王負責到某商場買某種紀念品,該商場規定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數相同,那么小王原計劃購買多少個紀念品?20.(8分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.21.(8分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.22.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.23.(12分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.24.某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數量不少于A型無人機的數量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
本題是規律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環;因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環;∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.本題考查坐標與圖形的變化,規律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考常考題型.2、C【解析】
根據“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.考查了解不等式組,根據求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.3、B【解析】∵在5.5~6.5組別的頻數是8,總數是40,∴=0.1.故選B.4、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.5、C【解析】
根據平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;②右邊是相同項的平方減去相反項的平方.6、D【解析】
首先寫出所有的組合情況,再進一步根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.本題考查的是三角形三邊關系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關鍵.7、A【解析】【分析】根據絕對值的意義進行求解即可得.【詳解】表示的是的絕對值,數軸上表示的點到原點的距離是,即的絕對值是,所以的值為,故選A.【點睛】本題考查了絕對值的意義,熟練掌握絕對值的意義是解題的關鍵.8、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.本題考查了折疊問題,菱形的性質,勾股定理,添加恰當的輔助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.9、B【解析】
方程兩邊同時乘以(x-2),轉化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.本題考查了解分式方程,利用了轉化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.10、B【解析】
由正方形的性質和等邊三角形的性質得出∠BAE=150°,AB=AE,由等腰三角形的性質和內角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質即可得出結果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.本題考查了正方形的性質、等邊三角形的性質、等腰三角形的判定與性質、三角形的外角性質;熟練掌握正方形和等邊三角形的性質,并能進行推理計算是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、17℃.【解析】
根據返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.本題考查正數和負數的意義.±4℃指的是比21℃高于4℃或低于4℃.12、7【解析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m13、.【解析】
先根據勾股定理求出AB的長,進而得出CD的長,由點與圓的位置關系即可得出結論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設AD=x,BD=1-x.解得x=,∴點A在圓外,點B在圓內,r的范圍是,故答案為.本題考查的是點與圓的位置關系,熟知點與圓的三種位置關系是解答此題的關鍵.14、240【解析】根據圖示,得出機器人的行走路線是沿著一個正八邊形的邊長行走一周,是解決本題的關鍵,考察了計算多邊形的周長,本題中由于機器人最后必須回到起點,可知此機器人一共轉了360°,我們可以計算機器人所轉的回數,即360°÷45°=8,則機器人的行走路線是沿著一個正八邊形的邊長行走一周,故機器人一共行走6×8=48m,根據時間=路程÷速度,即可得出結果.本題解析:依據題中的圖形,可知機器人一共轉了360°,∵360°÷45°=8,∴機器人一共行走6×8=48m.∴該機器人從開始到停止所需時間為48÷0.2=240s.15、5【解析】
作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據AM=AG+MG,列方程可得結論.,AG=CH=a+,根據AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.本題考查了等腰三角形的判定與性質、全等三角形的判定與性質、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.16、【解析】
第一次旋轉是以點A為圓心,那么菱形中心旋轉的半徑就是OA,解直角三角形可求出OA的長,圓心角是60°.第二次還是以點A為圓心,那么菱形中心旋轉的半徑就是OA,圓心角是60°.第三次就是以點B為旋轉中心,OB為半徑,旋轉的圓心角為60度.旋轉到此菱形就又回到了原圖.故這樣旋轉6次,就是2個這樣的弧長的總長,進而得出經過6次這樣的操作菱形中心O所經過的路徑總長.【詳解】解:∵菱形ABCD中,AB=4,∠C=60°,∴△ABD是等邊三角形,BO=DO=2,AO==,第一次旋轉的弧長=,∵第一、二次旋轉的弧長和=+=,第三次旋轉的弧長為:,故經過6次這樣的操作菱形中心O所經過的路徑總長為:2×(+)=.故答案為:.本題考查菱形的性質,翻轉的性質以及解直角三角形的知識.三、解答題(共8題,共72分)17、【解析】
先代入三角函數值、化簡二次根式、計算零指數冪、取絕對值符號,再計算乘法,最后計算加減可得.【詳解】原式===本題主要考查實數的混合運算,解題的關鍵是熟練掌握實數的混合運算順序和運算法則及零指數冪、絕對值和二次根式的性質.18、證明見解析.【解析】
不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.本題重點考查了圓周角定理、直徑所對的圓周角為直角及相似三角形判定等知識的綜合運用.19、(1)0<x≤200,且x是整數(2)175【解析】
(1)根據商場的規定確定出x的范圍即可;(2)設小王原計劃購買x個紀念品,根據按原價購買5個紀念品與按打折價購買6個紀念品的錢數相同列出分式方程,求出解即可得到結果.【詳解】(1)根據題意得:0<x≤200,且x為整數;(2)設小王原計劃購買x個紀念品,根據題意得:,整理得:5x+175=6x,解得:x=175,經檢驗x=175是分式方程的解,且滿足題意,則小王原計劃購買175個紀念品.此題考查了分式方程的應用,弄清題中的等量關系“按原價購買5個紀念品與按打折價購買6個紀念品的錢數相同”是解本題的關鍵.20、2.7米.【解析】
先根據勾股定理求出AB的長,同理可得出BD的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.21、(1)見解析;(2).【解析】
(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結論成立;(2)證明△OFD∽△AFE,根據相似三角形的性質即可求出圓的半徑.【詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.本題考查了切線的性質,平行線的判定與性質,等腰三角形的性質與判定,圓周角定理的推論,相似三角形的判定與性質,難度中等,熟練掌握各知識點是解答本題的關鍵.22、詳見解析.【解析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質和等腰三角形性質,找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點睛:此題考查切線的判定.證明的關鍵是得到△OCE≌△ODE.23、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數量關系:【解析】
(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據角平分線性質得到DE=DF,根據四邊形內角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老人中考語文作文
- 玻璃熔化工藝模擬與優化考核試卷
- 什么中的身影初一語文作文
- 難忘的友誼初一語文作文
- 綠色初二語文作文
- 河南省洛陽市新安縣2023-2024學年七年級下學期期末考試數學試卷(含答案)
- 磷肥生產設備結構與原理考核卷考核試卷
- 玩具行業人才培養需求考核試卷
- 寧波九校高二上學期語文作文
- 烘爐設備維護與管理考核試卷
- 人教部編版七年級語文上冊《散步》示范課教學課件
- 《智慧旅游認知與實踐》課件-第九章 智慧旅行社
- 傳承勞動精神彰顯青春風采發言稿
- 智能物流無人機配送行業發展建議
- 數學新課程標準解讀(2)聚焦核心素養關注終身發展課件
- 高標準農田建設項目竣工驗收第三方服務采購項目
- AQ 2001-2018 煉鋼安全規程(正式版)
- 醫院護理培訓課件:《安全注射》
- 2024年415全民國家安全教育日知識競賽及答案
- 再生資源消防安全培訓
- 高考地理二輪復習課件專題3S技術
評論
0/150
提交評論