河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)河北經(jīng)貿(mào)大學(xué)《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域有很多,其中金融領(lǐng)域是一個(gè)重要的應(yīng)用領(lǐng)域。以下關(guān)于數(shù)據(jù)挖掘在金融領(lǐng)域的應(yīng)用,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以用于風(fēng)險(xiǎn)評(píng)估和信用評(píng)分B.數(shù)據(jù)挖掘可以用于市場(chǎng)預(yù)測(cè)和投資決策C.數(shù)據(jù)挖掘可以用于客戶關(guān)系管理和營(yíng)銷活動(dòng)D.數(shù)據(jù)挖掘的結(jié)果可以直接用于金融交易,無(wú)需人工干預(yù)2、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),例如分析超市購(gòu)物籃中的商品組合。假設(shè)發(fā)現(xiàn)購(gòu)買面包的顧客往往也會(huì)購(gòu)買牛奶,這種關(guān)聯(lián)規(guī)則具有較高的支持度和置信度。這對(duì)超市的營(yíng)銷策略可能有什么啟示?()A.可以將面包和牛奶放在相鄰的貨架上,方便顧客購(gòu)買B.降低面包或牛奶的價(jià)格,以促進(jìn)銷售C.減少面包或牛奶的庫(kù)存,避免積壓D.這種關(guān)聯(lián)對(duì)營(yíng)銷策略沒(méi)有實(shí)際意義3、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系4、在進(jìn)行數(shù)據(jù)可視化時(shí),如果數(shù)據(jù)的量級(jí)差異較大,為了更清晰地展示數(shù)據(jù)分布,以下哪種處理方式較為合適?()A.使用相同的坐標(biāo)軸刻度B.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理C.只展示部分?jǐn)?shù)據(jù)D.采用多個(gè)圖表分別展示5、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集,以下哪種算法是常用的?()A.FP-Growth算法B.PageRank算法C.LDA算法D.HITS算法6、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理以去除噪聲,以下哪種方法可能會(huì)被使用?()A.中值濾波B.均值濾波C.高斯濾波D.以上都是7、數(shù)據(jù)分析中的模型選擇需要根據(jù)問(wèn)題的特點(diǎn)和數(shù)據(jù)的性質(zhì)來(lái)決定。假設(shè)要預(yù)測(cè)股票價(jià)格的短期波動(dòng),數(shù)據(jù)具有高噪聲和非線性特征。以下哪種模型在處理這種復(fù)雜的金融數(shù)據(jù)時(shí)更有可能取得較好的預(yù)測(cè)效果?()A.線性回歸模型B.決策樹(shù)模型C.支持向量回歸模型D.深度學(xué)習(xí)模型8、數(shù)據(jù)分析中,數(shù)據(jù)可視化的創(chuàng)新可以帶來(lái)更好的用戶體驗(yàn)。以下關(guān)于數(shù)據(jù)可視化創(chuàng)新的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化創(chuàng)新可以包括使用新的圖表類型、交互方式和可視化技術(shù)等B.數(shù)據(jù)可視化創(chuàng)新應(yīng)結(jié)合具體的問(wèn)題和數(shù)據(jù)特點(diǎn),不能為了創(chuàng)新而創(chuàng)新C.數(shù)據(jù)可視化創(chuàng)新可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性,增強(qiáng)數(shù)據(jù)的說(shuō)服力D.數(shù)據(jù)可視化創(chuàng)新只需要關(guān)注技術(shù)層面,不需要考慮用戶的需求和感受9、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們面對(duì)一個(gè)包含大量缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄的數(shù)據(jù)集,以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)刪除包含過(guò)多缺失值的行或列來(lái)處理缺失數(shù)據(jù),但這可能導(dǎo)致信息丟失B.對(duì)于錯(cuò)誤數(shù)據(jù),可以通過(guò)與其他可靠數(shù)據(jù)源進(jìn)行對(duì)比或基于數(shù)據(jù)的邏輯關(guān)系進(jìn)行修正C.重復(fù)記錄可以直接保留,因?yàn)樗鼈儾粫?huì)對(duì)數(shù)據(jù)分析結(jié)果產(chǎn)生太大影響D.運(yùn)用數(shù)據(jù)填充技術(shù),如使用均值、中位數(shù)或眾數(shù)來(lái)填充缺失值,但需要謹(jǐn)慎選擇填充方法10、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)刪除包含大量缺失值的記錄來(lái)簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)11、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用12、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是13、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,包含多個(gè)相關(guān)的特征。通過(guò)PCA降維后,如果解釋方差的比例較低,可能意味著什么?()A.降維效果較好,保留了主要信息B.丟失了較多的重要信息,需要重新考慮降維方法C.原始數(shù)據(jù)的質(zhì)量較差D.對(duì)后續(xù)的分析和建模沒(méi)有影響14、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場(chǎng)數(shù)據(jù),需要從歷史價(jià)格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時(shí)間序列的特征提取B.基于統(tǒng)計(jì)的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)15、在數(shù)據(jù)分析中,對(duì)于高維度的數(shù)據(jù),例如基因表達(dá)數(shù)據(jù)、圖像數(shù)據(jù)等,需要進(jìn)行降維處理以簡(jiǎn)化分析。以下哪種降維方法可能是常用的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.局部線性嵌入(LLE)D.以上都是16、在數(shù)據(jù)庫(kù)中,若要實(shí)現(xiàn)多表之間的關(guān)聯(lián)查詢,以下哪種連接方式較為常用?()A.內(nèi)連接B.外連接C.交叉連接D.自然連接17、在進(jìn)行地理數(shù)據(jù)分析時(shí),以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡(jiǎn)單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類分析對(duì)于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對(duì)變量關(guān)系的影響D.不需要考慮地理坐標(biāo)系和投影的選擇,對(duì)分析結(jié)果影響不大18、在數(shù)據(jù)分析中,模型選擇和調(diào)優(yōu)是提高性能的關(guān)鍵步驟。假設(shè)要在多個(gè)分類模型中選擇最優(yōu)的模型,以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)交叉驗(yàn)證等技術(shù)來(lái)評(píng)估不同模型在不同參數(shù)下的性能B.網(wǎng)格搜索和隨機(jī)搜索是常用的參數(shù)調(diào)優(yōu)方法,可以找到較優(yōu)的參數(shù)組合C.模型的復(fù)雜度越高,性能就越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.結(jié)合業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),選擇適合的模型和調(diào)優(yōu)方法19、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到準(zhǔn)確和可靠的分析結(jié)果,需要對(duì)數(shù)據(jù)進(jìn)行有效的清洗。以下哪種數(shù)據(jù)清洗方法在處理這種復(fù)雜的數(shù)據(jù)質(zhì)量問(wèn)題時(shí)最為有效?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則糾正錯(cuò)誤數(shù)據(jù)D.以上方法結(jié)合使用20、數(shù)據(jù)分析中的數(shù)據(jù)可視化不僅要美觀,還要具有交互性。假設(shè)要構(gòu)建一個(gè)交互式的數(shù)據(jù)可視化報(bào)表,允許用戶根據(jù)自己的需求篩選和查看數(shù)據(jù),以下哪種工具可能是最合適的?()A.ExcelB.TableauC.PowerBID.matplotlib21、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購(gòu)買行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對(duì)所有客戶采用相同的策略22、對(duì)于一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,若要進(jìn)行情感分析,以下哪種技術(shù)可能會(huì)被用到?()A.自然語(yǔ)言處理B.圖像識(shí)別C.語(yǔ)音識(shí)別D.機(jī)器學(xué)習(xí)23、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過(guò)程包括多個(gè)步驟。以下關(guān)于數(shù)據(jù)挖掘過(guò)程的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘的過(guò)程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋和評(píng)估等步驟B.數(shù)據(jù)準(zhǔn)備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹(shù)、聚類、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進(jìn)行解釋和評(píng)估,直接應(yīng)用于實(shí)際問(wèn)題即可24、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無(wú)需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求25、當(dāng)分析一個(gè)社交媒體平臺(tái)上用戶的行為數(shù)據(jù),包括發(fā)布內(nèi)容的頻率、互動(dòng)情況、關(guān)注對(duì)象等,以了解用戶的興趣和社交網(wǎng)絡(luò)結(jié)構(gòu)。考慮到數(shù)據(jù)的多樣性和復(fù)雜性,以下哪種數(shù)據(jù)可視化方式可能有助于更直觀地呈現(xiàn)分析結(jié)果?()A.柱狀圖B.折線圖C.餅圖D.社交網(wǎng)絡(luò)圖26、假設(shè)要分析一個(gè)零售企業(yè)的庫(kù)存數(shù)據(jù),包括商品種類、庫(kù)存數(shù)量、銷售速度等,以制定合理的補(bǔ)貨策略。以下哪個(gè)因素可能對(duì)庫(kù)存管理的效率產(chǎn)生最大影響?()A.商品的銷售預(yù)測(cè)準(zhǔn)確性B.供應(yīng)商的交貨時(shí)間C.庫(kù)存成本D.以上都是27、在數(shù)據(jù)分析中,相關(guān)性分析用于研究?jī)蓚€(gè)變量之間的關(guān)系。假設(shè)要分析身高和體重之間的相關(guān)性,以下關(guān)于相關(guān)性分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用皮爾遜相關(guān)系數(shù)來(lái)衡量線性相關(guān)性的強(qiáng)度和方向B.相關(guān)性強(qiáng)并不意味著存在因果關(guān)系,只是表明變量之間存在某種關(guān)聯(lián)C.即使相關(guān)系數(shù)為零,也不能完全排除變量之間存在非線性關(guān)系的可能D.相關(guān)性分析的結(jié)果不受數(shù)據(jù)范圍和樣本大小的影響28、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引29、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒(méi)有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為30、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的可視化呈現(xiàn)方式會(huì)影響對(duì)數(shù)據(jù)的理解和解讀。假設(shè)我們要展示不同年齡段人群的收入分布情況。以下關(guān)于數(shù)據(jù)可視化呈現(xiàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用小提琴圖同時(shí)展示數(shù)據(jù)的分布和密度B.雷達(dá)圖適合比較多個(gè)變量在不同類別上的表現(xiàn)C.3D圖表能夠更生動(dòng)地展示數(shù)據(jù),應(yīng)盡量使用3D圖表D.選擇合適的數(shù)據(jù)可視化呈現(xiàn)方式要考慮數(shù)據(jù)的特點(diǎn)和分析目的二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在交通規(guī)劃和管理中,數(shù)據(jù)分析能夠緩解擁堵、提高運(yùn)輸效率和安全性。請(qǐng)全面探討如何通過(guò)數(shù)據(jù)分析來(lái)優(yōu)化交通流量、規(guī)劃公共交通線路和預(yù)測(cè)交通事故,舉例說(shuō)明智能交通系統(tǒng)中數(shù)據(jù)分析的應(yīng)用和面臨的技術(shù)挑戰(zhàn),如大數(shù)據(jù)處理和實(shí)時(shí)決策支持。2、(本題5分)社交媒體的內(nèi)容創(chuàng)作和發(fā)布策略可以通過(guò)數(shù)據(jù)分析來(lái)指導(dǎo)。請(qǐng)?jiān)敿?xì)探討如何依據(jù)用戶興趣、熱門話題和平臺(tái)算法來(lái)優(yōu)化內(nèi)容創(chuàng)作、發(fā)布時(shí)間和推廣方式,以提高內(nèi)容的曝光度和傳播效果。3、(本題5分)在線教育平臺(tái)積累了大量的學(xué)生學(xué)習(xí)行為數(shù)據(jù),如何通過(guò)這些數(shù)據(jù)來(lái)改進(jìn)教學(xué)方法、優(yōu)化課程設(shè)計(jì)以及提升學(xué)生的學(xué)習(xí)效果?請(qǐng)?jiān)敿?xì)論述數(shù)據(jù)分析的流程、方法和可能遇到的挑戰(zhàn),并結(jié)合實(shí)際案例進(jìn)行分析。4、(本題5分)對(duì)于電商平臺(tái)的用戶評(píng)價(jià)數(shù)據(jù),分析如何利用自然語(yǔ)言處理技術(shù)進(jìn)行情感分析,挖掘用戶的需求和不滿,從而改進(jìn)產(chǎn)品和服務(wù),提升用戶滿意度和忠誠(chéng)度。5、(本題5分)在物流供應(yīng)鏈中,供應(yīng)商績(jī)效評(píng)估和采購(gòu)決策需要數(shù)據(jù)分析。以某制造企業(yè)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)選擇優(yōu)質(zhì)供應(yīng)商、優(yōu)化采購(gòu)成本、確保供應(yīng)鏈的穩(wěn)定性,以及如何處理供應(yīng)鏈中的數(shù)據(jù)延遲和不確定性。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)描述在數(shù)據(jù)分析中,如何使用SQL語(yǔ)言進(jìn)行數(shù)據(jù)查詢和處理,包括復(fù)雜的連接操作、聚合函數(shù)的應(yīng)用等。2、(本題5分)解釋什么是神經(jīng)架構(gòu)搜索(NAS),說(shuō)明其在自動(dòng)尋找最優(yōu)模型架構(gòu)中的應(yīng)用和原理,并舉例分析。3、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的可視化探索以發(fā)現(xiàn)潛在的模式和

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論