遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷_第1頁
遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷_第2頁
遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷_第3頁
遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷_第4頁
遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽市第120中學2025年高三下學期3月月考數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.2.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.3.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.4.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.5.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.6.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-7.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.8.已知數列為等差數列,為其前項和,,則()A. B. C. D.9.已知函數()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.10.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.11.已知,,則的大小關系為()A. B. C. D.12.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?二、填空題:本題共4小題,每小題5分,共20分。13.函數的最小正周期為________;若函數在區間上單調遞增,則的最大值為________.14.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________15.已知,則展開式中的系數為__16.若函數,則__________;__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,直線為曲線的切線(為自然對數的底數).(1)求實數的值;(2)用表示中的最小值,設函數,若函數為增函數,求實數的取值范圍.18.(12分)已知,函數.(Ⅰ)若在區間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)19.(12分)已知數列為公差為d的等差數列,,,且,,依次成等比數列,.(1)求數列的前n項和;(2)若,求數列的前n項和為.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.22.(10分)已知,,求證:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應用,數形結合思想,屬于中檔題2.D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.3.C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.4.B【解析】

根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.5.C【解析】

由題意可知,,由可得出,,利用導數可得出函數在區間上單調遞增,函數在區間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區間上單調遞增,同理可知,函數在區間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.6.A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.7.B【解析】

由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.8.B【解析】

利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.9.A【解析】

是函數的零點,根據五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數的周期性,考查函數的對稱性.函數的零點就是其圖象對稱中心的橫坐標.10.C【解析】

令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.【點睛】本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.11.D【解析】

由指數函數的圖像與性質易得最小,利用作差法,結合對數換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據指數函數的圖像與性質可知,由對數函數的圖像與性質可知,,所以最??;而由對數換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數式與對數式的化簡變形,對數換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.12.B【解析】試題分析:由集合A中的函數y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數考點:交集及其運算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

直接計算得到答案,根據題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數的周期和單調性,意在考查學生對于三角函數知識的綜合應用.14.【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯立,求出弦長,利用定義可得,進而求出?!驹斀狻坑芍?,焦點,所以直線:,代入得,即,設,,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。15.1.【解析】

由題意求定積分得到的值,再根據乘方的意義,排列組合數的計算公式,求出展開式中的系數.【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數.

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數的計算公式,屬于中檔題.16.01【解析】

根據分段函數解析式,代入即可求解.【詳解】函數,所以,.故答案為:0;1.【點睛】本題考查了分段函數求值的簡單應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

試題分析:(1)先求導,然后利用導數等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數,下面考察函數的符號,對函數求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調遞減.,∴,又曲線在上連續不間斷,所以由函數的零點存在性定理及其單調性知唯一的,使.∴;,,∴,從而,∴,由函數為增函數,且曲線在上連續不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數為增函數.故實數的取值范圍是考點:函數導數與不等式.【方法點晴】函數導數問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函數圖象上,也在切線上;斜率就是導數的值.根據這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數這個工具來求的取值范圍了.18.(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導,得,已知導函數單調遞增,又在區間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題19.(1)(2)【解析】

(1)利用等差數列的通項公式以及等比中項求出公差,從而求出,再利用等比數列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數列,,即:,,,,,;(2),.【點睛】本題考查了等差數列、等比數列的通項公式、等比數列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.20.(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結論;(Ⅱ)如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則,,,,,,,設面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21.(1)l:,C方程為;(2)=【解析】

(1)直接利用轉換關系,把參數方程極坐標方程和直角坐標方程之間進行轉換.

(2)利用一元二次方程根和系數關系式的應用求出結果.【詳解】(1)曲線C的參數方程為(m為參數),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數方程為(t為參數),代入得到(t1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論