




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省四校2025屆高三4月高考模擬測試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則下列不等式不能成立的是()A. B. C. D.2.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]3.曲線在點處的切線方程為,則()A. B. C.4 D.84.設復數滿足,在復平面內對應的點為,則不可能為()A. B. C. D.5.在三角形中,,,求()A. B. C. D.6.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.7.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.8.已知,,,則()A. B. C. D.9.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.310.函數的值域為()A. B. C. D.11.已知集合,,則=()A. B. C. D.12.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線的斜率為________.14.若復數滿足,其中為虛數單位,則的共軛復數在復平面內對應點的坐標為_____.15.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.16.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.18.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設且.(1)求點的坐標;(2)求的取值范圍.19.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.20.(12分)設函數f(x)=x2?4xsinx?4cosx.(1)討論函數f(x)在[?π,π]上的單調性;(2)證明:函數f(x)在R上有且僅有兩個零點.21.(12分)已知正實數滿足.(1)求的最小值.(2)證明:22.(10分)已知不等式對于任意的恒成立.(1)求實數m的取值范圍;(2)若m的最大值為M,且正實數a,b,c滿足.求證.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.2、B【解析】
先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.3、B【解析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.4、D【解析】
依題意,設,由,得,再一一驗證.【詳解】設,因為,所以,經驗證不滿足,故選:D.【點睛】本題主要考查了復數的概念、復數的幾何意義,還考查了推理論證能力,屬于基礎題.5、A【解析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.6、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.7、B【解析】
轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.8、B【解析】
利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.9、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.10、A【解析】
由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.11、C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.12、C【解析】
利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.14、【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數在復平面內對應點的坐標為,故答案為【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義準確計算是關鍵,是基礎題.15、2【解析】
由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.16、.【解析】
由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【點睛】本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,考查計算能力,屬于中等題.18、(1);(2).【解析】
(1)設出的坐標,代入,結合在拋物線上,求得兩點的橫坐標,進而求得點的坐標.(2)設出直線的方程,聯立直線的方程和橢圓方程,寫出韋達定理,結合,求得的表達式,結合二次函數的性質求得的取值范圍.【詳解】(1)可知,設則,又,所以解得所以.(2)據題意,直線的斜率必不為所以設將直線方程代入橢圓的方程中,整理得,設則①②因為所以且將①式平方除以②式得所以又解得又,所以令,則所以【點睛】本小題主要考查直線和拋物線的位置關系,考查直線和橢圓的位置關系,考查向量數量積的坐標運算,考查向量模的坐標運算,考查化歸與轉化的數學思想方法,考查運算求解能力,屬于難題.19、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設平面BEF的法向量為,,,設平面的法向量設二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學生的計算能力,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.20、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調遞減極小值單調遞增極大值單調遞減極小值單調遞增所以f(x)在區間,上單調遞減,在區間,上單調遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數,從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.21、(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論