2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1_第1頁
2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1_第2頁
2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1_第3頁
2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1_第4頁
2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濱州市惠民縣中學高三下學期數學試題獨立作業1請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.32.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.3.已知復數在復平面內對應的點的坐標為,則下列結論正確的是()A. B.復數的共軛復數是C. D.4.已知,則的大小關系是()A. B. C. D.5.觀察下列各式:,,,,,,,,根據以上規律,則()A. B. C. D.6.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.7.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.8.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.810.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.611.若均為任意實數,且,則的最小值為()A. B. C. D.12.已知復數滿足,則()A. B.2 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別是,若,,則____.14.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.15.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數λ的值是__.16.設的內角的對邊分別為,,.若,,,則_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.18.(12分)已知函數,.(1)求證:在區間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.19.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數)和曲線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.20.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.21.(12分)已知函數.(1)解不等式;(2)若函數的最小值為,求的最小值.22.(10分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.2、A【解析】

先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.3、D【解析】

首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.4、B【解析】

利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數、指數的大小比較,屬于基礎題.5、B【解析】

每個式子的值依次構成一個數列,然后歸納出數列的遞推關系后再計算.【詳解】以及數列的應用根據題設條件,設數字,,,,,,,構成一個數列,可得數列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數列的項歸納出遞推關系,從而可確定數列的一些項.6、D【解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.7、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.8、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.9、C【解析】

設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.10、D【解析】

作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.11、D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.12、A【解析】

由復數除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復數的除法法則,考查復數模的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,根據正弦定理“邊化角”,可得,根據余弦定理,結合已知聯立方程組,即可求得角.【詳解】根據正弦定理:可得根據余弦定理:由已知可得:故可聯立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14、【解析】

根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.15、【解析】

根據平面向量的數量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點睛】本題考查了單位向量和平面向量數量積的運算問題,是中檔題.16、或【解析】試題分析:由,則可運用同角三角函數的平方關系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.18、(1)詳見解析;(2)詳見解析.【解析】

(1)利用求導數,判斷在區間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區間上是增函數,則,所以在區間上是增函數.又因為,,所以在區間上有且僅有一個零點,且.(2)由題意,在區間上恒成立,即在區間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區間上單調遞減,在區間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計算能力,屬于較難題.19、(1),;(2)【解析】

(1)先將直線l和圓C的參數方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據極徑的定義分別表示出和,利用三角函數的性質求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數的恒等變換,屬于中檔題.20、(1);(2).【解析】

(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.21、(1)(2)【解析】

(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論