




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省黃山市黟縣中學2025屆高三3月第一次考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定2.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.13.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.4.已知函數,不等式對恒成立,則的取值范圍為()A. B. C. D.5.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.6.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.7.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.8.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.9.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.10.函數在的圖象大致為A. B.C. D.11.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.12.中國古代數學著作《孫子算經》中有這樣一道算術題:“今有物不知其數,三三數之余二,五五數之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數除以正整數后的余數為,則記為,例如.現將該問題以程序框圖的算法給出,執行該程序框圖,則輸出的等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三所學校舉行高三聯考,三所學校參加聯考的人數分別為160,240,400,為調查聯考數學學科的成績,現采用分層抽樣的方法在這三所學校中抽取樣本,若在學校抽取的數學成績的份數為30,則抽取的樣本容量為____________.14.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.15.在的二項展開式中,所有項的系數的和為________16.已知點為雙曲線的右焦點,兩點在雙曲線上,且關于原點對稱,若,設,且,則該雙曲線的焦距的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸的路程為S(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.18.(12分)已知函數.(1)當時,求的單調區間;(2)若函數有兩個極值點,,且,為的導函數,設,求的取值范圍,并求取到最小值時所對應的的值.19.(12分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.20.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.21.(12分)每年3月20日是國際幸福日,某電視臺隨機調查某一社區人們的幸福度.現從該社區群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數,結果見如圖所示莖葉圖,其中以小數點前的一位數字為莖,小數點后的一位數字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸福”.(Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸福”的概率;(Ⅱ)以這18人的樣本數據來估計整個社區的總體數據,若從該社區(人數很多)任選3人,記表示抽到“很幸福”的人數,求的分布列及.22.(10分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由函數的增減性及導數的應用得:設,求得可得為增函數,又,,時,根據條件得,即可得結果.【詳解】解:設,則,即為增函數,又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數的增減性及導數的應用,屬中檔題.2.B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數,再求函數的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.3.C【解析】
根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.4.C【解析】
確定函數為奇函數,且單調遞減,不等式轉化為,利用雙勾函數單調性求最值得到答案.【詳解】是奇函數,,易知均為減函數,故且在上單調遞減,不等式,即,結合函數的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據函數單調性和奇偶性解不等式,參數分離求最值是解題的關鍵.5.D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.6.B【解析】
根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【點睛】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.7.B【解析】
作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.8.A【解析】
先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.9.D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.10.A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.11.C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.12.C【解析】從21開始,輸出的數是除以3余2,除以5余3,滿足條件的是23,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
某層抽取的人數等于該層的總人數乘以抽樣比.【詳解】設抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學生基本的運算能力,是一道容易題.14.【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.15.1【解析】
設,令,的值即為所有項的系數之和。【詳解】設,令,所有項的系數的和為。【點睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區分。16.【解析】
設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質,涉及到求余弦型函數的值域,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】
(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數的模型,考查了分類討論的思想,屬于基礎題.18.(1)單調遞增區間為,單調遞減區間為(2)的取值范圍是;對應的的值為.【解析】
(1)當時,求的導數可得函數的單調區間;(2)若函數有兩個極值點,,且,利用導函數,可得的范圍,再表達,構造新函數可求的取值范圍,從而可求取到最小值時所對應的的值.【詳解】(1)函數由條件得函數的定義域:,當時,,所以:,時,,當時,,當,時,,則函數的單調增區間為:,單調遞減區間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調遞減,在,上單調遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當取到最小值時所對應的的值為;【點睛】本題主要考查利用導數研究函數的極值和單調區間問題,考查利用導數求函數的最值,體現了轉化的思想方法,屬于難題.19.(Ⅰ)見解析.(Ⅱ).【解析】
(I)證明平面得出平面,根據面面垂直的判定定理得到結論;(II)當平面時,棱錐體積最大,建立空間坐標系,計算兩平面的法向量,計算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點,,又平面平面,又平面平面平面(II),為定值當平面時,三棱錐的體積取最大值以為原點,以為坐標軸建立空間直角坐標系則,設平面的法向量為,則即,令可得平面是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關鍵是能夠根據體積的最值確定垂直關系,從而可以建立起空間直角坐標系,利用空間向量法求得二面角,屬于中檔題.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高校學期個人工作方案
- 2025年雙十二營銷活動策劃方案
- 《金融工程》 課件 第12-14章 期權的二叉樹模型;隨機積分與資產價格建模;Black-Scholes-Merton期權定價模型
- 投標報價決策
- 木制品幼兒園課程
- 《投資學》(第十一章)
- 金融制度的變遷
- 湖南化工職業技術學院《企業管理學》2023-2024學年第二學期期末試卷
- 河南省許昌鄢陵縣聯考2025年初三下學期教學質量檢測試題化學試題試卷含解析
- 江西水利職業學院《兒童文學》2023-2024學年第一學期期末試卷
- 湖南文藝出版社小學六年級下冊音樂全冊教案
- 中國十大階層的劃分課件
- 了凡四訓-徐韻發(課堂PPT)
- 高中英語各種教材詞組匯總大全(超級實用)
- 內燃機機油泵轉子系列參數
- 遠程視頻會議系統建設方案課件
- 蹲踞式起跑 教案
- 四十二手眼圖(經典珍藏版)
- 通用橫版企業報價單模板
- cvc和picc導管的維護ppt課件
- 真我中心學-穿越選擇之屋(簡)重要感悟
評論
0/150
提交評論