




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市和平區2025屆下學期高三期中考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的面積是,,,則()A.5 B.或1 C.5或1 D.2.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.3.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是4.已知全集,集合,則=()A. B.C. D.5.設復數,則=()A.1 B. C. D.6.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.1087.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.8.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.9.已知集合,集合,則等于()A. B.C. D.10.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.11.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業里程達到13.1萬公里,其中高鐵營業里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列12.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總人數為__________.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為16.已知,(,),則=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.18.(12分)已知函數.(1)證明:當時,;(2)若函數只有一個零點,求正實數的值.19.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.20.(12分)已知函數,設的最小值為m.(1)求m的值;(2)是否存在實數a,b,使得,?并說明理由.21.(12分)已知,,分別是三個內角,,的對邊,.(1)求;(2)若,,求,.22.(10分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.2.C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數學運算能力,難度一般.3.B【解析】
根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.4.D【解析】
先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.5.A【解析】
根據復數的除法運算,代入化簡即可求解.【詳解】復數,則故選:A.【點睛】本題考查了復數的除法運算與化簡求值,屬于基礎題.6.B【解析】
根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內的米粒數大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.7.A【解析】
先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.8.A【解析】
先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養.9.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.10.C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.11.D【解析】
由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D【點睛】本題考查統計的知識,考查數據處理能力和應用意識,是基礎題12.D【解析】
整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】
根據樣本容量及各組人數比,可求得C組中的人數;由組中甲、乙二人均被抽到的概率是可求得C組的總人數,即可由各組人數比求得總人數.【詳解】三組人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數求總人數的應用,屬于基礎題.14.【解析】
求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.15.【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.16.【解析】
先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數學運算的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數列是正項數列,得到,根據數列是等比數列求通項公式;(Ⅱ),根據新定義和對數的運算分類討論數列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數列的各項都為正數,∴,即.∴數列是以2為首項,2為公比的等比數列,∴.(Ⅱ)∵,∴,.∴數列的前2020項的和為.【點睛】本題考查根據數列的遞推公式求通項公式和數列的前項和,意在考查轉化與化歸的思想,計算能力,屬于中檔題型.18.(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數求證即可(2)直接求導可得,,令,得或,故根據0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數的增區間為,減區間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數在區間上單調遞減.又,故此時函數僅有一個零點為0;②當時,令,得,故函數的增區間為,減區間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數還有一個零點,不符合題意;③當時,令得,故函數的增區間為,減區間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數還有一個零點,不符合題意.綜上,所求實數的值為.【點睛】本題考查不等式的恒成立問題和函數的零點問題,本題的難點在于把導數化成因式分解的形式,如,進而分類討論,本題屬于難題19.(1)(2)【解析】
(1)由,可求,然后由時,可得,根據等比數列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當時,,解得,當時,①②②①得,即,數列是以2為首項,2為公比的等比數列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數列的通項求解中的應用,等比數列的通項公式、裂項求和方法,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.20.(1)(2)不存在;詳見解析【解析】
(1)將函數去絕對值化為分段函數的形式,從而可求得函數的最小值,進而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數,,使得,.【點睛】本題考查了分段函數的最值、基本不等式的應用,屬于基礎題.21.(1);(2),或,.【解析】
(1)利用正弦定理,轉化原式為,結合,可得,即得解;(2)由余弦定理,結合題中數據,可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高校學期個人工作方案
- 2025年雙十二營銷活動策劃方案
- 《金融工程》 課件 第12-14章 期權的二叉樹模型;隨機積分與資產價格建模;Black-Scholes-Merton期權定價模型
- 投標報價決策
- 木制品幼兒園課程
- 《投資學》(第十一章)
- 金融制度的變遷
- 湖南化工職業技術學院《企業管理學》2023-2024學年第二學期期末試卷
- 河南省許昌鄢陵縣聯考2025年初三下學期教學質量檢測試題化學試題試卷含解析
- 江西水利職業學院《兒童文學》2023-2024學年第一學期期末試卷
- 第7課 全球航路的開辟和歐洲早期殖民擴張(教學課件)-【中職專用】《世界歷史》(高教版2023?基礎模塊)
- 2024年社區工作者考試必考1000題附完整答案(名師系列)
- 全國大唐杯大學生新一代信息通信技術大賽考試題庫(必練500題)
- 皮膚病的總論
- 人工智能倫理與社會影響的討論
- 讓改革創新成為青春遠航的動力
- T-CSGPC 016-2023 文物建筑健康監測技術規范
- 前房積血護理查房
- 【課件】五指活動課程講解
- 采煤機說明書-樣本
- 數控折彎機操作手冊樣本
評論
0/150
提交評論