




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省白城市大安市2023-2024學年中考數學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)2.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>53.已知是二元一次方程組的解,則的算術平方根為()A.±2 B. C.2 D.44.如圖1是某生活小區的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數關系式是()A. B.C. D.5.一次函數y=2x+1的圖像不經過(
)A.第一象限B.第二象限C.第三象限D.第四象限6.(2016四川省甘孜州)如圖,在5×5的正方形網格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π7.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.8.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.69.已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4二、填空題(本大題共6個小題,每小題3分,共18分)11.將半徑為5,圓心角為144°的扇形圍成一個圈錐的側面,則這個圓錐的底面半徑為.12.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.13.對于實數x,我們規定[x]表示不大于x的最大整數,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.14.雙曲線、在第一象限的圖像如圖,過y2上的任意一點A,作x軸的平行線交y1于B,交y軸于C,過A作x軸的垂線交y1于D,交x軸于E,連結BD、CE,則=.15.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。16.已知一次函數y=ax+b,且2a+b=1,則該一次函數圖象必經過點_____.三、解答題(共8題,共72分)17.(8分)為了提高中學生身體素質,學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調查(每個被調查的對象必須選擇而且只能在四種體育活動中選擇一種),將數據進行整理并繪制成以下兩幅統計圖(未畫完整).這次調查中,一共調查了________名學生;請補全兩幅統計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.18.(8分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.如圖是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?若該校九年級共有200名學生,如圖是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數約為多少?19.(8分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.由定義知,取AB中點N,連結MN,MN與AB的關系是_____.拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.20.(8分)某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數關系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.21.(8分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數解析式;求點C的坐標.22.(10分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數據:≈1.414,≈1.732).23.(12分)如圖,一次函數y=kx+b與反比例函數y=m求反比例函數和一次函數的解析式;直接寫出當x>0時,kx+b<m24.如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據二次函數解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數得到對稱軸是直線,則拋物線與軸的兩個交點坐標關于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關鍵是掌握拋物線的對稱性質.2、D【解析】
先利用勾股定理計算出OP=1,然后根據點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.3、C【解析】二元一次方程組的解和解二元一次方程組,求代數式的值,算術平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術平方根為1.故選C.4、D【解析】
根據圖象可設二次函數的頂點式,再將點(0,0)代入即可.【詳解】解:根據圖象,設函數解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據實際拋物線形,求函數解析式,解題的關鍵是正確設出函數解析式.5、D【解析】
根據一次函數的系數判斷出函數圖象所經過的象限,由k=2>0,b=1>0可知,一次函數y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據一次函數圖象的性質即可判斷該函數圖象經過一、二、三象限,不經過第四象限.故選D.【點睛】本題考查一次函數圖象與系數的關系,解決此類題目的關鍵是確定k、b的正負.6、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉的性質.7、A【解析】
先根據勾股定理得到AB=,再根據扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.8、C【解析】
先根據等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關鍵是熟知等腰三角形的三線合一定理.9、C【解析】
根據二次函數的性質逐項分析可得解.【詳解】解:由函數圖象可得各系數的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C10、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】考點:圓錐的計算.分析:求得扇形的弧長,除以1π即為圓錐的底面半徑.解:扇形的弧長為:=4π;這個圓錐的底面半徑為:4π÷1π=1.點評:考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.12、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.13、11≤x<1【解析】
根據對于實數x我們規定[x]不大于x最大整數,可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數得出不等式組是解題關鍵.14、【解析】
設A點的橫坐標為a,把x=a代入得,則點A的坐標為(a,).∵AC⊥y軸,AE⊥x軸,∴C點坐標為(0,),B點的縱坐標為,E點坐標為(a,0),D點的橫坐標為a.∵B點、D點在上,∴當y=時,x=;當x=a,y=.∴B點坐標為(,),D點坐標為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.15、288°【解析】
母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.16、(2,1)【解析】∵一次函數y=ax+b,∴當x=2,y=2a+b,又2a+b=1,∴當x=2,y=1,即該圖象一定經過點(2,1).故答案為(2,1).三、解答題(共8題,共72分)17、(1)200;(2)答案見解析;(3).【解析】
(1)由題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);(2)根據題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數為:200×30%=60(名);則可補全統計圖;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與一人是喜歡跳繩、一人是喜歡足球的學生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);故答案為:200;(2)C組人數:200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學生,D表示1名喜歡足球的學生;
畫樹狀圖得:∵共有12種等可能的結果,一人是喜歡跳繩、一人是喜歡足球的學生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學生的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統計圖與扇形統計圖.用到的知識點為:概率=所求情況數與總情況數之比.18、(1)50(2)36%(3)160【解析】
(1)根據條形圖的意義,將各組人數依次相加即可得到答案;(2)根據條形圖可直接得到最喜歡籃球活動的人數,除以(1)中的調查總人數即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全校總人數的百分比,然后求出全校的總人數;再根據最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數.【詳解】(1)該校對名學生進行了抽樣調查.本次調查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數占被調查人數的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數約為人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.19、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】
(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數綜合以及等腰直角三角形的性質,正確應用等腰直角三角形的性質是解題關鍵.20、112.1【解析】試題分析:(1)根據題意即可求得y與x的函數關系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數關系式,根據二次函數的最值問題,即可求得這個苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當x=7.1時,S最大值=112.1,即當矩形苗圃園垂直于墻的一邊的長為7.1米時,這個苗圃園的面積最大,這個最大值為112.1.點睛:此題考查了二次函數的實際應用問題.解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.21、(1)反比例函數解析式為y=;(2)C點坐標為(2,1)【解析】
(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).22、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設AD=x,在Rt△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產學研協議合同標準文本
- 公司扣留員工合同標準文本
- 京東招商合作合同樣本
- 代訂酒店服務合同樣本
- 住戶房租租賃合同標準文本
- 供需方合同標準文本
- 主體泥工合同樣本
- 公證買房合同樣本
- 公共維修基金合同樣本
- 會展項目合作合同樣本
- 航天模型的設計、制作與比賽課件
- 高考倒計時60天課件
- 幼兒園繪本故事:《十二生肖》 課件
- (完整版)人教版小學3-6年級英語單詞表-可直接打印
- 機電安裝總進度計劃橫道圖
- 起重吊裝作業安全綜合驗收記錄表
- 園林綠化工程監理實施細則(完整版)
- 夢想(英語演講稿)PPT幻燈片課件(PPT 12頁)
- 中國聯通員工績效管理實施計劃方案
- 法院刑事審判庭速裁庭廉政風險防控責任清單
- IEC60335-1(中文)
評論
0/150
提交評論