




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
絕密★啟用前
2025年高考數學模擬試卷03(全國卷文科)
數學(文科)
(考試時間:120分鐘試卷滿分:150分)
注意事項:
1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。
2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑。如需改動,用橡
皮擦干凈后,再選涂其他答案標號。回答非選擇題時,將答案寫在答題卡上。寫在本試卷上無效。
3.考試結束后,將本試卷和答題卡一并交回。
第一部分(選擇題共60分)
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
要求的。
1.已知集合4={1/6,84,B={l,a4},則滿足4口3=3的實數°的個數為()
A.1B.2C.3D.4
4+i
2.已知復數z=「,z的共軌復數為三,則z-z=()
1+1
A庖RU
C.4D.2
22
3.在AASC中,瓦5+2詼=6則()
A.AD=-AB+-ACB.AD=-AB+-AC
3355
C.AD=-AB+-ACD.AD=AB--AC
333
4.已知y(x)=£1-siiu是偶函數,貝Ija=()
A.0B.1C.-1D-1
5.設見僅是兩個不同的平面,/,機是兩條直線,且相。.則尸”是“相//分”的()
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件
6.隨著國潮的興起,消費者對漢服的接受度日漸提高,數據顯示,目前中國大眾穿漢服的場景主要有漢服
活動、藝術拍攝、傳統節日、旅游觀光、舞臺表演、婚慶典禮6類,某自媒體博主準備從這6類場景中
選2類拍攝中國大眾穿漢服的照片,則漢服活動、旅游觀光這2類場景至少有1類場景被選中的概率為
()
7.已知一個三棱錐的三視圖如圖,正視圖為邊長為3的正方形,側視圖和俯視圖均為等腰直角三角形,則
此幾何體的外接球的表面積為(
A.6兀B.12兀C.177tD.27兀
8.已知點尸(-3,0),點。在圓+上運動,若NQPO=a,貝han2tz的最大值為()
A,逆R4后
D.------------C.20D.4&
77
己知函數"x)=sin(ox+9)(0>O),若直線為函數/(x)圖象的一條對稱軸,[?,0]為函數〃力圖
9.
象的一個對稱中心,且“X)在1口
上單調遞減,則。的最大值為()
AYD1824
?D.—
1717
10.我國南宋時期杰出的數學家秦九韶在《數書九章》中提出了“三斜求積術”,其內容為:“以小斜塞,并
大斜幕,減中斜幕,余半之,自乘于上;以小斜幕乘大斜幕,減上,余四約之,為實;一為從隅,開
平方得積.”把以上文字寫成公式,即S=,;/一+C?*](其中S為面積,a,b,c為AAFC的
啊I2JJ
三個內角A,B,C所對的邊).若反osC+8053=4,b=5,且當空平=3,則利用“三斜求積”公式
smA
可得AABC的面積S=()
A.26B.4^/6C.6y[6D.876
22
H.已知雙曲線C:1-與=1(。>0,6>0)的右焦點為R過點尸作垂直于x軸的直線/,M,N分別是/與
ab
雙曲線。及其漸近線在第一象限內的交點.若又是線段尸N的中點,則。的漸近線方程為()
亞
A.y=±xB.y=±—x
2
C.y=±^-xD.y=±^-x
35
12.已知〃=51110.5,/?=3嗎。=108030.5,則。,瓦c的大小關系是()
A.a<b<cB.a<c<bC.c<a<bD.c<b<a
第二部分(非選擇題共90分)
三、填空題:本題共4小題,每小題5分,共20分。
X-4y-3<0
13.已矢口實數羽y滿足2x+3y—6W0,貝!Jz=4x+3y的最小值為.
3x-y+2>0
14.設0<e<],向量方=(sin2e,cos。),B=(cose,l),若M//5,貝八皿9=.
15.已知圓錐SO1的軸截面81B為正三角形,球。2與圓錐5。1的底面和側面都相切.設圓錐S。1的體積、表面
積分別為匕百,球。2的體積、表面積分別為%,邑,則券W=.
16.拋物線y2=4x的焦點凡點A,8在拋物線上,且=弦48的中點〃在準線上的射影為N,
則W\MN\的最大值為________-
IAB\
三、解答題:共70分,解答應寫出必要的文字說明、證明過程及驗算步驟.第17~21題為必考題,每個試題
考生都必須作答,第22、23題為選做題,考生根據要求作答。
(-)必考題:共60分.
17.(12分)第19屆亞運會將于2023年9月23日在我國杭州舉行,這是繼北京亞運會后,我國第二次舉
辦這一亞洲最大的體育盛會.為迎接這一體育盛會,浙江某大學舉辦了一次主題為“喜迎杭州亞運,講好
浙江故事”的知識競賽,并從所有參賽大學生中隨機抽取了100人,統計他們的競賽成績(滿分100分,
每名參賽大學生至少得60分),并將成績分成4組:[60,70),[70,80),[80,90),[90,100](W:分),
得到如下的頻率分布直方圖.
頻率/組距
(1)試用樣本估計總體的思想,估計這次競賽中參賽大學生成績的平均數及中位數;(同一組數據用該組
數據的區間中點值作代表)
(2)現將競賽成績不低于90分的學生稱為“亞運達人”,成績低于90分的學生稱為“非亞運達人”.這100
名參賽大學生的情況統計如下.
亞運達人非亞運達人總計
男生153045
女生55055
判斷是否有99.5%的把握認為能否獲得“亞運達人”稱號與性別有關.
n^ad—bc^
附:K2(其中〃=a+Z?+c+d).
(〃+/?)"+d)(〃+c)伍+d)
pg%)0.100.050.0250.0100.0050.001
2.7063.8415.0246.6357.87910.828
18.(12分)已知數列{%}是公差d不為零的等差數列,其前〃項和為S“,若。2,小成等比數列,且S4=20.
⑴求數列{%}的通項公式;
.111
(2)記(=---+----+,,,+-----,求證:
4出a2a3
19.(12分)如圖,在四棱錐P-ABCD中,平面平面底面ABC。為等腰梯形,
AB//CD,且AB=2CD=2AD=2.
DC
(1)證明:平面PAC_L平面BBC;
(2)若點A到平面PBC的距離為也,求四棱錐尸-ABC。的體積.
2
20.(12分)已知〃x)=(2x+l)lnx-5,曲線在》=1處的切線方程為'=依+》?
(1)求。,匕;
(2)證明f(x)<ax+b.
21.(12分)已知雙曲線C:,■-,=l(“>0,b>0)的右焦點尸(2,0),離心率為半,過JF的直線4交C于點A,B
兩點,過下與4垂直的直線4交C于9E兩點.
(1)當直線4的傾斜角為巳時,求由A民2E四點圍成的四邊形的面積;
(2)直線妝+3分別交//于點M,N,若M為AB的中點,證明:N為的中點.
(-)選考題:共10分.請考生在第22、23題中任選一題作答,如果多做。則按所做的第一題記分.
._fx=l+2coscr
22.(10分)在平面直角坐標系xQy中,曲線。的參數方程為).(。為參數).以坐標原點為極
[y=2sma
點,X軸正半軸為極軸建立極坐標系,直線/的極坐標方程為0sin[e-5)=呼.
(1)求C的普通方程和/的直角坐標方程;
(2)設直線/與x軸相交于點A,動點8在C上,點M滿足痂=麗,點/的軌跡為E,試判斷曲線C
與曲線E是否有公共點.若有公共點,求出其直角坐標;若沒有公共點,請說明理由.
23.(10分)已知a,b,c均為正數,且a+b+c=3.
1a
⑴是否存在。,b,c,使得一+—£(0,5),說明理由;
ab+c
(2)TIE明,—3+〃+(3+b+:3+cW6
數學(文科)?參考答案
第一部分(選擇題共60分)
一、選擇題:本題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合要求
的。
123456789101112
BBCAACDBBBCB
第二部分(非選擇題共90分)
二、填空題:本題共4小題,每小題5分,共20分。
13.-714.-/0.515.116.B
23
三、解答題:共70分,解答應寫出必要的文字說明、證明過程及驗算步驟.第17~21題為必考題,每個試題
考生都必須作答,第22、23題為選做題,考生根據要求作答。
(-)必考題:共60分.
17.(12分)
【詳解】(1)=65x0.015x10+75x0.030x10+85x0.035x10+95x0.020x10=81,
由10x0.15+10x0.30=0.45,10x0.15+10x0.30+10x0.35=0.8>0.5,
故中位數位于[80,90),設中位數為y,則有去胃=?:一解得了“81.43,
90-800.8-0.45
即平均數無=81,中位數y=81.43;
100(15x50-30x5)2
(2)=--9.091>7.879-
45x55x20x8011
故有99.5%的把握認為能否獲得“亞運達人”稱號與性別有關.
18.(12分)
【詳解】(1)因為的,%,%成等比數列,且邑=20,
所以=(4+1)(%+7")1=2
由dw0,解得
4。]+6J=20d=2
所以4=ax+{n-V)d=2n.
(2)i—=^|-=…〃),
ataM411771
1
/曰TI1111、1“1、
得+門…+不—1)=*/,
由“eN*,有々>0,所以1一一二<1,得雹=1(1一一
H+1n+14(n+1)4
19.(12分)
【詳解】(1)在等腰梯形ABCD中,因為AB=2CD=2AD=2,
所以ZADC=NBCD=120。,ZDAB=ZABC=60°,
所以/C4B=30。,所以NACB=9(T,AC,3c.
因為平面尸AB平面ABCD,平面PABc平面ABCD=AB,PA1.AB,PA(^平面PAB,
所以PAL平面A3CD.
又3Cu平面ABCD,所以PA_L3C.
又尸AcAC=A,PA,ACu平面PAC,所以3C,平面PAC.
又BCu平面BBC,所以平面PAC_L平面BBC.
(2)如圖,過點A作AELPC于點E,由(1)可知平面R4CL平面P8C,
又平面PACfl平面尸3。=尸。,鉆(=平面尸47,所以平面PBC,故AE=@.
2
在AWC中,ZADC=120°,AD=DC=\,所以AC=g.
在RSACE中,AE=-,AC=^,所以NACE=3O。.
2
XPA1AC,tanZACP=—=^,所以上4=1,即四棱錐P-ABCD的高為1.
AC3
由題意知,梯形ABC。的高為YL所以梯形45。9的面積為Lx(l+2)x,i=±8,
所以四棱錐尸-ASCD的體積為1x&Gxl=3.
344
20.(12分)
丫211
【詳解】(1)由〃x)=(2x+l)lrLx—■—/'(%)=21nx+(2x+l)x=21nx-x+—+2,
則廣⑴=2,所以曲線〃力在點x=l處的切線斜率為左=2,
又因為"l)=-g,所以切線方程為:y+|=2(x-l),即y=2x-|.
所以a=2,b=—1.
(2)要證明辦+b,只要證(2x+l)lnx-—2]+gWO,
2
r5i
設g(x)=(2x+l)hix-------2%+—,則g,(x)=21IIXH-------x,
22%
4/z(x)=21nx+--x,則〃'(x)=21]二—(I)W0,
XXXX
所以網力在(o,+e)上單調遞減,又〃⑴=0,
所以當xe(o,l)時,〃⑺>0,則g(x)在(0,1)上單調遞增,
當xe(l,+e)時,g)<0,則g(x)在(1,+8)上單調遞減,
所以g(x)?g(l)=0,所以〃x)<or+6.
21.(12分)
【詳解】(1)由題意知£==2「.〃=—"2=4—3=1,
a3
所以C的方程為:-丁=1
???直線4的傾斜角為:,過點尸(2,0”.直線《的方程為y=x-2
X2
設4(再,乂),_8(%2,%),聯立V3'2=1
y=x-2
%=6
得2/一12X+15=0「.<15
無1%2二萬
2
/.|AB\=A/1+k卜-兀21=>/2?J(X]+%2『一4再馬=2^3
r~
???4與k互相垂直,4的傾斜角為彳.,?由對稱性可知\ED\=\AB\=2V3
(2)方法一:由題意可知44的斜率存在且不為。,設/"的方程分別為〉=匕(》-2)?=&(廠2)由44互
相垂直可得上他=-1①
y=k,(x-i\_3-2kxm②
聯立"+3…E
y=k(x-i)
聯立x
x1-~3y2=3
1r\72
整理得(1一3腎)尤2+12Kx-3(4形+1)=0,;.xA+xB=—
1—3K
?.?M是AB的中點,為=五芋二苫?③
21一3勺
,3—"lk,Tn—6k;31—k;
由②③ZB得丁丁=匚宓’即"=5.丁④
尸&"一2)得/=色皿⑤
同理聯立
x=my+31-k2m
由①④⑤得
_6左一6K。_\;)_6勺-6《+6(:右_6k°_6kl__6%
“一2k「3k正巧)-2K-3勾+3匕%—3.+匕-3k一「3公⑥
-b
y=fc,(x-2)
聯立
尤2-3丁=3'
/\\_]2左2
得(1一34)%2+126%—3(46+l)=0,...%o+%E=p^^
_6k2
取DE中點V,所以卬=1需⑦
15k2
由⑥⑦得N'與N重合,即N是DE中點.
方法二:由題意可知44的斜率存在且不為0,設乙4的方程分別為x=rj+2,x=sv+2
由4,互相垂直可得區=T
設A,8的坐標分別為(為,%),(彳2,%)
尤=4y+2
聯立
爐-3y2=3'
得任一3)/+布/+1=0,又?.?4一+%=^7
_y,+%It,
?.,M是AB的中點;?%/=~2^=J~P
=+2=
'62t2)
整理可得的/汨中點N'、3-名3-?2j
又?.?直線/:x=沖+3恒過定點//(3,0),
3—3/;-2%
同理麗=
3]-3-2八3_3.2£―243%2_3+3_3,)
3-彳3彳-13Z12—13—Z,2(3_/:乂3彳_1)
:.HM〃加,三點共線
所以。E的中點N'在/上,又DE上的點N在/上
所以N'與N重合,即N是DE中點
方法三:由題意可知44的斜率存在且不為。,設44的方程分別為,=尢(彳-2),尸治(彳-2)
由4,4互相垂直可得%能=-1①
、
y=勺(x-2)3—2kMh7k\_
聯立得M‘所以。"=藪礪②
x=my+3l-km91—km
}x7
W=i
設A,8的坐標分別為(%,刈,(孫必),代入C得,
兩式相減得
變形為21產?止匹=:,即自材/廣;③
玉+工2玉_入233
?=!,即"2=].?!-④
由②③得
3-2klm32勺
?=以”一2)得N3-2k2mk|
同理聯立2
x=my+31-k2m'1-k2mj,
所以BN=藪1⑤
_k2_1kxk2_1
由①④⑤得°N=32k31一片=3-2(i:)=亞,
2k1
所以七
取DE中點N',同理可證自M?網=g⑦
由⑥⑦得%卯="加.
結合N,N'均在直線4上,所以N'與N重合,即N是DE中點.
(-)選考題:共10分.請考生在第22、23題中任選一題作答,如果多做。則按所做的第一題記分.
22.(10分)
【詳解】(1)由題設曲線C的參數方程,消參得(無一17+丁=4,
由尤=/?cos6,y=/?sin。,且/?sin^-^=^-(/?sin6,-/?cos6,)=W1,£y_gx=當,化簡得
x-y+3=0,
,C的普通方程為(%-1)?+丁=4,/直角坐標方程為工-y+3=0.
(2)當y=。時,x=-3nA(-3,0),易知3(l+2cos〃,2sina),設
,?/\——?/\------——?fx+3=2COS6Z-X+1fx=COS6Z-l一
可得AA/=(x+3,y),M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025【企業管理】設備采購與安裝承包合同書
- 高中地理第四章同步導學案:傳統工業區與新工業區
- 2025金屬加工機械產品訂購合同
- 2024年棗莊市臺兒莊區人民醫院招聘真題
- 2025建筑幕墻設計與施工合同范本
- 2025網約車司機雇傭合同范本
- 2024年濮陽市市屬事業單位考試真題
- 寵物購貓合同范本
- 第四單元 三位數被一位數除(第一課時)(教案)三年級上冊數學滬教版
- 2024年簡陽市招聘衛健系統事業單位專業技術人員真題
- 2025遼寧沈陽地鐵集團有限公司所屬公司招聘11人筆試參考題庫附帶答案詳解
- 2025年合肥熱電集團春季招聘30人筆試參考題庫附帶答案詳解
- 第8課《良師相伴 亦師亦友》第1框《良師相伴助力成長》-【中職專用】《心理健康與職業生涯》同步課堂課件
- 專利法全套ppt課件(完整版)
- GB∕T 3639-2021 冷拔或冷軋精密無縫鋼管
- 西師版六年級下冊數學第五單元 總復習 教案
- 色譜、質譜、聯用
- 獨生子女父母退休一次性獎勵審批1
- 鋁合金窗陜西銀杉節能門窗有限責任公司鋁合金制作及安裝工藝流程圖
- 蘇教版小學數學四年級下冊《圖形旋轉》練習題
- 燒結普通磚、多孔磚回彈計算
評論
0/150
提交評論