寒假作業(試題)2024-2025學年三年級上冊數學 人教版(十二)_第1頁
寒假作業(試題)2024-2025學年三年級上冊數學 人教版(十二)_第2頁
寒假作業(試題)2024-2025學年三年級上冊數學 人教版(十二)_第3頁
寒假作業(試題)2024-2025學年三年級上冊數學 人教版(十二)_第4頁
寒假作業(試題)2024-2025學年三年級上冊數學 人教版(十二)_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寒假作業(十二)一.選擇題(共5小題)1.(2023秋?海曙區期末)三(1)班的同學去游樂園玩。樂樂把玩碰碰車和卡丁車的人數用維恩圖記錄下來。根據圖中的信息,下列選項中,說法不正確的是()A.只玩卡丁車的人數比只玩碰碰車的少2人。 B.去游樂園的同學一共有27+15﹣10=32人。 C.只玩碰碰車的有17人。2.(2023秋?萬州區期末)明明一家去采摘,爺爺、爸爸、媽媽和明明一起采摘了黃瓜,媽媽、明明和奶奶一起采摘了草莓,用“”表示人,下面數量間的關系表示正確的是()A. B. C.3.(2023秋?渝北區期末)同學們到動物園游玩,參觀熊貓館的有28人,參觀大象館的有32人,兩個館都參觀的有20人。去動物園游玩的同學有()人。A.60 B.40 C.804.(2023秋?秀山縣期末)如圖是三(3)班同學喜歡跳繩和踢球情況的調查統計,喜歡跳繩的同學共有()人。A.18 B.37 C.23 D.195.(2023秋?鹿城區期末)三(1)班共有32人參加學校冬鍛跳繩比賽,參加跳短繩比賽的有22人,參加跳長繩比賽的有15人。兩項都參加的有()人。A.3 B.4 C.5二.填空題(共5小題)6.(2023秋?甘州區校級期末)甲果園種了杏樹、梨樹、蘋果樹、桃樹,乙果園種了桃樹、山楂樹、柿子樹,兩個果園一共種了種果樹。7.(2023秋?永嘉縣期末)三(1)班參加書法比賽的有32人,參加朗誦比賽的有18人,兩項都參加的有8人,只參加一項比賽的有人。8.(2023秋?資中縣期末)如圖是三(1)班第一小組的同學參加社團的情況,既參加美術社團又參加機器人社團的有人。9.(2023秋?濱江區期末)學校開設兩個興趣小組,三(1)班42人都報名參加了活動,其中27人參加書畫小組,24人參加棋藝小組,兩個小組都參加的有人.10.(2023秋?淳安縣期末)三(1)班參加基礎性托管的學生有35人,參加拓展性托管的有20人,兩項都參加的有20人,三(1)班共有人參加課后服務。三.判斷題(共5小題)11.(2023秋?元氏縣期末)共有12人,如果會游泳的有7人,會騎自行車的有8人,那么兩種都會的有3人。12.(2022秋?韓城市期末)三(1)班讀過《格林童話》的有25人,讀過《安徒生童話》有23人,有6人兩種書都讀過,至少每人讀過其中的一本,這個班共有42人。13.(2023秋?相山區期末)三(1)班同學到動物園游玩,規定只能參觀熊貓館或大象館。參觀熊貓館的有25人,參觀大象館的有30人,所以去動物園的一共有55人。14.(2023秋?方城縣期末)三(1)班有36名同學,會下圍棋的有16人,會下軍棋的有14人,兩種棋都不會的有10人,兩種棋都會的有4人。15.(2023春?曲麻萊縣期末)三年級一共有31人參加了舞蹈組或美術組,其中參加舞蹈組的有19人,參加美術組的有24人,兩個小組都參加的有12人.四.應用題(共5小題)16.(2023秋?資中縣期末)40人參加智力競賽,答對第一題的有23人,答對第二題的有21人。兩題都答對的有15人。兩題都沒答對的有多少人?17.(2024秋?城廂區校級期中)第26屆中國?哈爾濱國際雪雕比賽2024年1月6日開幕,引領了冰雪文化熱潮。受此影響,紅星小學舉行冰雕、雪雕趣味賽,報名雪雕的有34人,報名冰雕的有56人,兩項比賽都報名的有18人,共有多少人報名參加比賽?18.(2023秋?范縣月考)某班共有學生50人,其中35人會游泳,38人會騎自行車,40人會溜冰,46人會打乒乓球,那么四項活動都會的至少有多少人?19.(2023秋?岱岳區期末)班級在慶元旦文藝匯演中,合唱的有25人,跳舞的有15人,參加這兩項演出的一共有30人。兩項都參加的有多少人?20.(2024春?濱城區期末)四(1)班有35名同學,會剪紙的有15名,會篆刻的有18名,兩種都不會的有5名。兩種都會的有多少名同學?五.操作題(共3小題)21.(2023秋?魏縣期末)統計人數。喜歡小貓的:李麗、李紅、劉琴、李梅、王峰、劉曉、李強、王剛喜歡小狗的:王明、劉琴、王芳、王剛、劉鑫、李麗、王峰、何田、王林、王軍(l)把名字填在圓圈里。(2)一共調查了人,只喜歡小貓的有人,只喜歡小狗的有人,兩種都喜歡的有人。22.(2023秋?西華縣月考)根據下面的統計表,將蔬菜名填寫在合適的圈里。明明愛吃的蔬菜西紅柿南瓜蘿卜土豆茄子辣椒包菜樂樂愛吃的蔬菜豆角土豆辣椒白菜西紅柿冬瓜明明和樂樂愛吃的蔬菜一共有種。23.(2022秋?洪山區期末)請你畫圖表示出下面的信息。三(1)班圖書角有許多同學們喜歡的書籍,其中喜歡《搭船的鳥》這本書的有15人,喜歡《數學幫幫忙》這本書的有18人,這兩本書都喜歡的有10人。六.解答題(共2小題)24.(2023秋?鎮海區期末)學校喜迎新春,舉行了寫帶“春”字成語的活動。小明寫了15個,小紅寫了12個。小明寫的成語中有5個和小紅寫的一樣,他們一共寫出了多少個不同的帶“春”字的成語?25.(2023秋?贛州期末)小明考小白一道題:同學們到動物園游玩,參觀熊貓館的有25人,參觀大象館的有30人,兩個館都參觀的有18人,去動物園的同學一共有多少人?小白反問:這些同學中有沒有既沒去參觀熊貓館,也沒去參觀大象館的?你覺得小白的問題對解題有用嗎?,為什么?。

2024-2025學年人教版三年級(上)數學寒假作業(十二)參考答案與試題解析題號12345答案ACBCC一.選擇題(共5小題)1.(2023秋?海曙區期末)三(1)班的同學去游樂園玩。樂樂把玩碰碰車和卡丁車的人數用維恩圖記錄下來。根據圖中的信息,下列選項中,說法不正確的是()A.只玩卡丁車的人數比只玩碰碰車的少2人。 B.去游樂園的同學一共有27+15﹣10=32人。 C.只玩碰碰車的有17人。【考點】容斥原理.【專題】應用意識.【答案】A【分析】根據維恩圖記錄的數據逐項分析判斷即可。【解答】解:選項A:17﹣5=12(人),所以只玩卡丁車的人數比只玩碰碰車的少12人,此選項說法錯誤。選項B:去游樂園的同學一共有27+15﹣10=32(人),此說法正確。選項C:只玩碰碰車的有17人,此說法正確。故選:A。【點評】此題考查利用容斥原理解決實際問題的靈活應用,可借助圖形解決問題。2.(2023秋?萬州區期末)明明一家去采摘,爺爺、爸爸、媽媽和明明一起采摘了黃瓜,媽媽、明明和奶奶一起采摘了草莓,用“”表示人,下面數量間的關系表示正確的是()A. B. C.【考點】容斥原理.【專題】應用意識.【答案】C【分析】根據爺爺、爸爸、媽媽和明明4人采摘了黃瓜,媽媽、明明、奶奶3人采摘了草莓,可知一共有5人,只采摘黃瓜的有爸爸和爺爺,共2人,只采摘草莓的有奶奶,共1人,既采摘黃瓜又采摘草莓的有媽媽和明明,共2人,據此解答。【解答】解:由分析可知,一共有5人,只采摘黃瓜的有2人,只采摘草莓的有1人,既采摘黃瓜又采摘草莓的有2人,所以C選項符合題意。故選:C。【點評】解答此題的關鍵是,在理解題意的基礎上,要會看韋恩圖(即利用容斥原理的表示圖)。3.(2023秋?渝北區期末)同學們到動物園游玩,參觀熊貓館的有28人,參觀大象館的有32人,兩個館都參觀的有20人。去動物園游玩的同學有()人。A.60 B.40 C.80【考點】容斥原理.【專題】壓軸題;應用意識.【答案】B【分析】根據容斥原理公式:總人數=A+B﹣既A又B解答即可。【解答】解:28+32﹣20=60﹣20=40(人)答:去動物園游玩的同學有40人。故選:B。【點評】本題考查了容斥原理,知識點是容斥原理一:總人數=A+B﹣既A又B。4.(2023秋?秀山縣期末)如圖是三(3)班同學喜歡跳繩和踢球情況的調查統計,喜歡跳繩的同學共有()人。A.18 B.37 C.23 D.19【考點】容斥原理.【專題】應用意識.【答案】C【分析】喜歡跳繩的同學數等于只喜歡跳繩的同學數加兩項運動都喜歡的同學數,據此求解即可。【解答】解:18+5=23(人)答:喜歡跳繩的同學共有23人。故選:C。【點評】解答此題的關鍵是,在理解題意的基礎上,要會看容斥原理的表示圖。5.(2023秋?鹿城區期末)三(1)班共有32人參加學校冬鍛跳繩比賽,參加跳短繩比賽的有22人,參加跳長繩比賽的有15人。兩項都參加的有()人。A.3 B.4 C.5【考點】容斥原理.【專題】綜合判斷題;應用意識.【答案】C【分析】參加跳短繩的人數+參加跳長繩的人數﹣參加學校冬鍛跳繩人數,即是所求。【解答】解:22+15﹣32=5(人)答:兩項都參加的有5人。故選:C。【點評】本題考查了容斥原理的應用。二.填空題(共5小題)6.(2023秋?甘州區校級期末)甲果園種了杏樹、梨樹、蘋果樹、桃樹,乙果園種了桃樹、山楂樹、柿子樹,兩個果園一共種了6種果樹。【考點】容斥原理.【專題】應用題;應用意識.【答案】6。【分析】根據題意,先求出甲果園和乙果園一共種了多少種樹,然后再減去兩個果園中重復的桃樹這一種樹即可。【解答】解:4+3﹣1=6(種)答:兩個果園一共種了6種果樹。故答案為:6。【點評】本題考查了容斥原理,知識點是容斥原理一:總人數=(A+B)﹣既A又B。7.(2023秋?永嘉縣期末)三(1)班參加書法比賽的有32人,參加朗誦比賽的有18人,兩項都參加的有8人,只參加一項比賽的有34人。【考點】容斥原理.【專題】應用意識.【答案】34。【分析】用參加書法比賽的人數減去兩項都參加的人數,求出只參加書法比賽的人數,用參加朗誦比賽的人數減去兩項都參加的人數,求出只參加朗誦比賽的人數,然后把只參加書法比賽的人數與只參加朗誦比賽的人數想加即可解答。【解答】解:(32﹣8)+(18﹣8)=24+10=34(人)答:只參加一項比賽的有34人。故答案為:34。【點評】熟練掌握集合問題的解題方法是解答本題的關鍵。8.(2023秋?資中縣期末)如圖是三(1)班第一小組的同學參加社團的情況,既參加美術社團又參加機器人社團的有2人。【考點】容斥原理.【專題】包含與排隊問題;數據分析觀念.【答案】2。【分析】看兩個集合圈的交集里面的人數就是既參加美術社團又參加機器人社團的人數。【解答】解:如圖是三(1)班第一小組的同學參加社團的情況,既參加美術社團又參加機器人社團的有2人。故答案為:2。【點評】明確集合圈表示的意義是解決本題的關鍵。9.(2023秋?濱江區期末)學校開設兩個興趣小組,三(1)班42人都報名參加了活動,其中27人參加書畫小組,24人參加棋藝小組,兩個小組都參加的有9人.【考點】容斥原理.【專題】傳統應用題專題.【答案】見試題解答內容【分析】用27+24求出至少參加一個興趣小組的同學的總人數,再減去報名參加的總人數就是兩個小組都參加的人數.【解答】解:27+24﹣42=51﹣42=9(人);答:兩個小組都參加的有9人,故答案為:9.【點評】解答此題的關鍵是根據容斥原理,找出對應量,列式解決問題.10.(2023秋?淳安縣期末)三(1)班參加基礎性托管的學生有35人,參加拓展性托管的有20人,兩項都參加的有20人,三(1)班共有35人參加課后服務。【考點】容斥原理.【專題】壓軸題;應用意識.【答案】35。【分析】根據容斥原理公式:總人數=(A+B)﹣既A又B解答即可。【解答】解:35+20﹣20=55﹣20=35(人)答:三(1)班共有35人參加課后服務。故答案為:35。【點評】此題考查利用容斥原理解決實際問題的靈活應用,可借助圖形解決問題。三.判斷題(共5小題)11.(2023秋?元氏縣期末)共有12人,如果會游泳的有7人,會騎自行車的有8人,那么兩種都會的有3人。√【考點】容斥原理.【專題】應用意識.【答案】√。【分析】會游泳的人數加會騎自行車的人數,再減去12人即等于兩種都會的人數,據此即可解答。【解答】解:7+8﹣12=15﹣12=3(人)答:兩種都會的有3人。原題說法正確。故答案為:√。【點評】熟練掌握集合問題的解題方法是解答本題的關鍵。12.(2022秋?韓城市期末)三(1)班讀過《格林童話》的有25人,讀過《安徒生童話》有23人,有6人兩種書都讀過,至少每人讀過其中的一本,這個班共有42人。√【考點】容斥原理.【專題】壓軸題;應用意識.【答案】√【分析】根據容斥原理公式:總人數=A+B﹣既A又B解答即可。【解答】解:23+25﹣6=48﹣6=42(人)即這個班共有42人,所以原題說法正確。故答案為:√。【點評】本題考查了容斥原理,關鍵是求出至少參加一種的人數,知識點是容斥原理一:總人數=A+B﹣既A又B。13.(2023秋?相山區期末)三(1)班同學到動物園游玩,規定只能參觀熊貓館或大象館。參觀熊貓館的有25人,參觀大象館的有30人,所以去動物園的一共有55人。×【考點】容斥原理.【專題】綜合判斷題;推理能力.【答案】×【分析】只能參觀熊貓館或大象館,有3種情況,只參觀熊貓館,只參觀大象館,既參觀熊貓館又參觀大象館,所以參觀人數=只參觀熊貓館人數+只參觀大象館人數﹣既參觀熊貓館又參觀大象館的人數,即由題意可知去動物園的最多有55人,不是一共有55人。【解答】解:只能參觀熊貓館或大象館,有3種情況,只參觀熊貓館,只參觀大象館,既參觀熊貓館又參觀大象館,所以參觀人數=只參觀熊貓館人數+只參觀大象館人數﹣既參觀熊貓館又參觀大象館的人數,即由題意可知去動物園的最多有55人,不是一共有55人。即原說法錯誤。故答案為:×。【點評】本題考查了容斥原理的應用。14.(2023秋?方城縣期末)三(1)班有36名同學,會下圍棋的有16人,會下軍棋的有14人,兩種棋都不會的有10人,兩種棋都會的有4人。√【考點】容斥原理.【專題】綜合判斷題;推理能力.【答案】√【分析】先用總人數減去兩種棋都不會的人數即為會一種及以上的人數,再用會下圍棋的人數加上會下軍棋的人數,最后減去會一種及以上的人數即為兩種棋都會的人數,據此解答即可。【解答】解:36﹣10=26(人)16+14﹣26=30﹣26=4(人)就兩種棋都會的有4人。原題說法正確。故答案為:√。【點評】此題考查利用容斥原理解決實際問題的靈活應用,可借助圖形解決問題。15.(2023春?曲麻萊縣期末)三年級一共有31人參加了舞蹈組或美術組,其中參加舞蹈組的有19人,參加美術組的有24人,兩個小組都參加的有12人.√【考點】容斥原理.【專題】壓軸題.【答案】見試題解答內容【分析】根據“參加舞蹈組的有19人,參加美術組的有24人.”可得兩者的總人數:19+24=43人,這其中把兩種興趣小組都參加的人數多計算了一次,所以根據容斥原理可得兩種興趣小組都參加的人數是:43﹣31=12(人),據此解答即可.【解答】解:19+24﹣31=43﹣31=12(人)即兩個小組都參加的有12人,所以原題說法正確.故答案為:√.【點評】本題是典型的容斥問題,解答規律是:既A又B=A+B﹣總數量(兩種情況).四.應用題(共5小題)16.(2023秋?資中縣期末)40人參加智力競賽,答對第一題的有23人,答對第二題的有21人。兩題都答對的有15人。兩題都沒答對的有多少人?【考點】容斥原理.【專題】包含與排隊問題;應用意識.【答案】11。【分析】分別求出只答對第一題和第二題的人數,從總人數中減去只答對第一題、第二題的人數及兩題都答對的15人就得兩題都沒答對的人數。【解答】解:23﹣15=8(人)21﹣15=6(人)40﹣8﹣6﹣15=11(人)答:兩題都沒答對的有11人。【點評】明確數量間包含與被包含的關系是解決本題的關鍵。17.(2024秋?城廂區校級期中)第26屆中國?哈爾濱國際雪雕比賽2024年1月6日開幕,引領了冰雪文化熱潮。受此影響,紅星小學舉行冰雕、雪雕趣味賽,報名雪雕的有34人,報名冰雕的有56人,兩項比賽都報名的有18人,共有多少人報名參加比賽?【考點】容斥原理.【專題】應用題;應用意識.【答案】72人。【分析】先用34人加上56人求出參加冰雕、雪雕趣味賽的人數和,再減去兩項都報名的18人,就是參加比賽的總人數。【解答】解:34+56﹣18=90﹣18=72(人)答:共有72人報名參加比賽。【點評】本題是典型的容斥問題,解答規律是:總數量=A+B﹣既A又B。18.(2023秋?范縣月考)某班共有學生50人,其中35人會游泳,38人會騎自行車,40人會溜冰,46人會打乒乓球,那么四項活動都會的至少有多少人?【考點】容斥原理.【專題】應用意識.【答案】9人。【分析】用總人數減去會游泳的人數,計算不會游泳的人數,同理計算不會騎自行車的人數、不會溜冰的人數、不會打乒乓球的人數,再用總人數減去不會游泳的人數、不會騎自行車的人數、不會溜冰的人數、不會打乒乓球的人數和,求四項活動都會的人數至少多少人。【解答】解:不會游泳的人數:50﹣35=15(人)不會騎自行車的人數:50﹣38=12(人)不會溜冰的人數:50﹣40=10(人)不會打乒乓球的人數:50﹣46=4(人)15+12+10+4=41(人)50﹣41=9(人)答:四項活動都會的至少有9人。【點評】本題主要考查容斥問題公式的應用。19.(2023秋?岱岳區期末)班級在慶元旦文藝匯演中,合唱的有25人,跳舞的有15人,參加這兩項演出的一共有30人。兩項都參加的有多少人?【考點】容斥原理.【專題】競賽專題;應用意識.【答案】10人。【分析】根據“跳舞的有15人,合唱的有25人”可得兩者的總人數:15+25=40人,這其中把兩種節目都參加的人數多計算了一次,所以根據容斥原理可得兩項都參加的人數是:40﹣30=10(人),據此解答即可。【解答】解:25+15﹣30=10(人)答:兩項都參加的有10人。【點評】本題是典型的容斥問題,解答規律是:既A又B=A+B﹣總數量(兩種情況)。20.(2024春?濱城區期末)四(1)班有35名同學,會剪紙的有15名,會篆刻的有18名,兩種都不會的有5名。兩種都會的有多少名同學?【考點】容斥原理.【專題】壓軸題;應用意識.【答案】3名。【分析】根據容斥原理公式“既A又B=A+B﹣(總人數﹣既不是A又不是B)”解答即可。【解答】解:18+15﹣(35﹣5)=33﹣30=3(名)答:兩種都會的有3名同學。【點評】此題考查利用容斥原理解決實際問題的靈活應用,可借助圖形解決問題。五.操作題(共3小題)21.(2023秋?魏縣期末)統計人數。喜歡小貓的:李麗、李紅、劉琴、李梅、王峰、劉曉、李強、王剛喜歡小狗的:王明、劉琴、王芳、王剛、劉鑫、李麗、王峰、何田、王林、王軍(l)把名字填在圓圈里。(2)一共調查了14人,只喜歡小貓的有4人,只喜歡小狗的有6人,兩種都喜歡的有4人。【考點】容斥原理.【專題】應用意識.【答案】(1);(2)14,4,6,4。【分析】根據容斥原理,把兩種都喜歡的人填在中間,剩余的填在兩邊,填寫韋恩圖即可。【解答】解:(1)(2)一共調查了14人,只喜歡小貓的有4人,只喜歡小狗的有6人,兩種都喜歡的有4人。故答案為:14,4,6,4。【點評】此題主要考查了容斥原理的應用,要熟練掌握。22.(2023秋?西華縣月考)根據下面的統計表,將蔬菜名填寫在合適的圈里。明明愛吃的蔬菜西紅柿南瓜蘿卜土豆茄子辣椒包菜樂樂愛吃的蔬菜豆角土豆辣椒白菜西紅柿冬瓜明明和樂樂愛吃的蔬菜一共有10種。【考點】容斥原理.【專題】應用意識.【答案】,10。【分析】由表格可得:明明愛吃的蔬菜有7種,樂樂愛吃的蔬菜有6種,兩個圓圈重合后,分成了三個部分,第一個部分代表明明只愛吃的蔬菜,第二個部分代表兩人都愛吃的蔬菜,第三個部分代表樂樂只愛吃的蔬菜,由此將蔬菜填入對應的圓圈中即可;用明明愛吃的蔬菜加上樂樂愛吃的蔬菜,然后再減去兩人都愛吃的蔬菜,即可求出明明和樂樂愛吃的蔬菜一共有多少種。由此解答。【解答】解:如表:一共有:7+6﹣3=10(種)答:明明和樂樂愛吃的蔬菜一共有10種。故答案為:10。【點評】此題考查容斥原理的應用。關鍵在于理解每部分所代表的含義。23.(2022秋?洪山區期末)請你畫圖表示出下面的信息。三(1)班圖書角有許多同學們喜歡的書籍,其中喜歡《搭船的鳥》這本書的有15人,喜歡《數學幫幫忙》這本書的有18人,這兩本書都喜歡的有10人。【考點】容斥原理.【專題】壓軸題;應用意識.【答案】【分析】先用15減去10求出只喜歡《搭船的鳥》這本書的人數;同理,求出只喜歡《數學幫幫忙》這本書的人數,再畫圖即可。【解答】解:15﹣10=5(人)18﹣10=8(人)【點評】此題考查利用容斥原理解決實際問題的靈活應用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論