2025屆南通市重點中學數學高二上期末經典試題含解析_第1頁
2025屆南通市重點中學數學高二上期末經典試題含解析_第2頁
2025屆南通市重點中學數學高二上期末經典試題含解析_第3頁
2025屆南通市重點中學數學高二上期末經典試題含解析_第4頁
2025屆南通市重點中學數學高二上期末經典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆南通市重點中學數學高二上期末經典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,D是正方體的一個“直角尖”O-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當AC與PQ所成角為最小時,()A. B.C. D.22.若正實數、滿足,且不等式有解,則實數取值范圍是()A.或 B.或C. D.3.若,,且,則()A. B.C. D.4.函數是偶函數且在上單調遞減,,則的解集為()A. B.C. D.5.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.16.數列滿足,對任意,都有,則()A. B.C. D.7.設正實數,滿足(其中為正常數),若的最大值為3,則()A.3 B.C. D.8.設函數,則和的值分別為()A.、 B.、C.、 D.、9.設直線的傾斜角為,且,則滿足A. B.C. D.10.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.11.在平行六面體中,,,,則()A. B.5C. D.312.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的焦點分別為,A為橢圓上一點,則________14.若,且,則的最小值是____________.15.已知數列滿足,,則數列的前n項和______16.直線的傾斜角的大小是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積18.(12分)如圖1,已知矩形中,,E為上一點且.現將沿著折起,使點D到達點P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設動點M在線段上,判斷直線與平面位置關系,并說明理由.19.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F分別為、的中點.(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.20.(12分)已知對于,函數有意義,關于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.21.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.22.(10分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數學、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學、生物、道德與法治、歷史、地理)按學生在該學科中的排名進行等級賦分,即根據改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態分布原則,確定各等級人數所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內的考生原始成績,依照等比例轉換法則,分別轉換到,,,,,,,八個分數區間,得到考生的等級成績.該市學生的中考化學原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學生中考化學原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學生各科原始成績不再返回學校,只告知各校參考學生的各科平均成績及方差.已知某校初三共有名學生參加中考,為了估計該校學生的化學原始成績達到等級及以上(含等級)的人數,將該校學生的化學原始成績看作服從正態分布,并用這名學生的化學平均成績作為的估計值,用這名學生化學成績的方差作為的估計值,計算人數(結果保留整數)附:,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據題意,建立空間直角坐標系,求得AC與PQ夾角的余弦值關于點坐標的函數關系,求得角度最小時點的坐標,即可代值計算求解結果.【詳解】根據題意,兩兩垂直,故以為坐標原點,建立空間直角坐標系如下所示:設,則,不妨設點的坐標為,則,,則,又,設直線所成角為,則,則,令,令,則,令,則,此時.故當時,取得最大值,此時最小,點,則,故,則故選:C.2、A【解析】將代數式與相乘,展開后利用基本不等式可求得的最小值,可得出關于實數的不等式,解之即可.【詳解】因為正實數、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷3、A【解析】由于對數函數的存在,故需要對進行放縮,結合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調遞減,在上單調遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A4、D【解析】分析可知函數在上為增函數,且有,將所求不等式變形為,可得出關于實數的不等式,由此可解得實數的取值范圍.【詳解】因為函數是偶函數且在上單調遞減,則該函數在上為增函數,且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.5、C【解析】利用兩直線平行的判定有,即可求參數值.【詳解】由題設,,可得或.經驗證不重合,滿足題意,故選:C.6、C【解析】首先根據題設條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數列通項,考查利用錯位相減法求數列的前n項和,考查邏輯思維能力和計算能力,屬于常考題.7、D【解析】由于,,為正數,且,所以利用基本不等式可求出結果【詳解】解:因為正實數,滿足(其中為正常數),所以,則,所以,所以故選:D.8、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.9、D【解析】因為,所以,,,,故選D10、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A11、B【解析】由,則結合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.12、A【解析】設直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設過點的直線.由直線與圓、圓均相切,得解得(1).設點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結合(1)(2)兩式,解得二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:414、【解析】應用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:15、【解析】先求出,利用裂項相消法求和.【詳解】因為數列滿足,,所以數列為公差d=2的等差數列,所以,所以所以.故答案為:.16、【解析】由題意,即,∴考點:直線的傾斜角.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2)2.【解析】(1)取的中點,連接,.運用面面平行的判定和性質可得證;(2)過點作,垂足為,連接,,設點到平面的距離為,根據棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三棱錐的體積相等,可求得答案.【小問1詳解】證明:如圖,取的中點,連接,因為,分別是棱,的中點,所以,又平面,平面,所以平面因為,且,分別是棱,的中點,所以,又平面,平面,所以平面因為平面,且,所以平面平面因為平面,所以平面【小問2詳解】解:過點作,垂足為,連接,,則四邊形是正方形,從而因為,所以,則,從而直角梯形的面積設點到平面的距離為,則四棱錐的體積,解得因為三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積因為平面,所以三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積為218、(1)證明見解析(2)答案不唯一,見解析【解析】(1)利用折疊前后的線段長度及勾股定理求證即可;(2)動點M滿足時和,但時兩種情況,利用線線平行或相交得到結論.【小問1詳解】在折疊前的圖中,如圖:,E為上一點且,則,折疊后,所以,又,所以,所以為直角三角形.小問2詳解】當動點M在線段上,滿足,同樣在線段上取,使得,則,當時,則,又且所以,且,所以四邊形為平行四邊形,所以,又平面,所以此時平面;當時,此時,但,所以四邊形為梯形,所以與必然相交,所以與平面必然相交.綜上,當動點M滿足時,平面;當動點M滿足,但時,與平面相交.19、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內的兩條相交直線,即可得到答案;(2)分別以OB,OC,OE為x軸,y軸,z軸,建立直角坐標系,平面FAC的一個法向量為,代入向量的夾角公式,即可得到答案;【小問1詳解】∵ABCD為菱形,∴,設AC與BD的交點為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以OB,OC,OE為x軸,y軸,z軸,建立直角坐標系,則,,,,,,,設平面FAC的法向量為,則由可得,取,故可得平面FAC的一個法向量為,記直線與平面FAC的夾角為,則20、(1)(2)【解析】(1)由與的真假相反,得出為真命題,將定義域問題轉化為不等式的恒成立問題,討論參數的取值,得出答案;(2)由必要不充分條件的定義得出,討論的取值結合包含關系得出的范圍.【詳解】解:(1)因為為假命題,所以為真命題,所以對恒成立.當時,不符合題意;當時,則有,則.綜上,k的取值范圍為.(2)由,得.由(1)知,當為真命題時,則令令因為p是q的必要不充分條件,所以當時,,,解得當時,,符合題意;當時,,符合題意;所以的取值范圍是【點睛】本題主要考查了不等式的恒成立問題以及根據必要不充分條件求參數范圍,屬于中檔題.21、(1);(2)存在,,.【解析】(1)根據橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設該圓的切線方程為,聯立,根據,結合韋達定理運算,同時滿足,則存在,否則不存在,當切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結合韋達定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為,聯立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當時,,因為,所以,所以,所以,當且僅當時取”=”.②當時,.③當AB的斜率不存在時,兩個交點為或,所以此時,綜上,|AB|的取值范圍為,即:【點睛】思路點睛:1、解決直線與橢圓的位置關系的相關問題,其常規思路是先把直線方程與橢圓方程聯立,消元、化簡,然后應用根與系數的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單2、設直線與橢圓的交點坐標為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論