




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江紹興一中數學高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.2.阿波羅尼斯約公元前年證明過這樣一個命題:平面內到兩定點距離之比為常數且的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點A,B間的距離為2,動點P與A,B距離之比滿足:,當P、A、B三點不共線時,面積的最大值是()A. B.2C. D.3.實數且,,則連接,兩點的直線與圓C:的位置關系是()A.相離 B.相切C.相交 D.不能確定4.已知,若對于且都有成立,則實數的取值范圍是()A. B.C. D.5.已知,為雙曲線:的焦點,為,(其中為雙曲線半焦距),與雙曲線的交點,且有,則該雙曲線的離心率為()A. B.C. D.6.已知數列滿足,,在()A.25 B.30C.32 D.647.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓8.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.59.已知關于x的不等式的解集為空集,則的最小值為()A. B.2C. D.410.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.11.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.12.曲線y=lnx在點M處的切線過原點,則該切線的斜率為()A.1 B.eC.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出直線一個方向向量______14.拋物線的準線方程是___________.15.如圖,正方體中,點E,F,G分別是,AB,的中點,則直線與GF所成角的大小是______(用反三角函數表示)16.斐波那契數列,又稱“兔子數列”,由數學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數列滿足,,,若記,,則________.(用,表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線C:(a>0,b>0)的離心率為,實軸長為2.(1)求雙曲線的焦點到漸近線的距離;(2)若直線y=x+m被雙曲線C截得的弦長為,求m的值.18.(12分)已知函數,其中常數,(1)求單調區間;(2)若且對任意,都有,證明:方程有且只有兩個實根19.(12分)已知O為坐標原點,雙曲線C:(,)的離心率為,點P在雙曲線C上,點,分別為雙曲線C的左右焦點,.(1)求雙曲線C的標準方程;(2)已知點,,設直線PA,PB的斜率分別為,.證明:為定值.20.(12分)已知拋物線上的點到其焦點F的距離為5.(1)求C的方程;(2)過點的直線l交C于A,B兩點,且N為線段的中點,求直線l的方程.21.(12分)已知數列{an}是一個等差數列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值22.(10分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A2、C【解析】根據給定條件建立平面直角坐標系,求出點P的軌跡方程,探求點P與直線AB的最大距離即可計算作答.【詳解】依題意,以線段AB的中點為原點,直線AB為x軸建立平面直角坐標系,如圖,則,,設,因,則,化簡整理得:,因此,點P的軌跡是以點為圓心,為半徑的圓,點P不在x軸上時,與點A,B可構成三角形,當點P到直線(軸)的距離最大時,的面積最大,顯然,點P到軸的最大距離為,此時,,所以面積的最大值是故選:C3、B【解析】由題意知,m,n是方程的根,再根據兩點式求出直線方程,利用圓心到直線的距離與半徑之間的關系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點睛】本題考查了直線與圓的位置關系,考查了計算求解能力,屬于基礎題.4、D【解析】根據題意轉化為對于且時,都有恒成立,構造函數,轉化為時,恒成立,求得的導數,轉化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設,可得恒成立,即對于且時,都有恒成立,構造函數,可轉化為,函數為單調遞增函數,所以當時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數取值范圍為.故選:D5、B【解析】根據求得的關系,結合雙曲線的定義以及勾股定理,即可求得的等量關系,再求離心率即可.【詳解】根據題意,連接,作圖如下:顯然為直角三角形,又,又點在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.6、A【解析】根據題中條件,得出數列公差,進而可求出結果.【詳解】由得,所以數列是以為公差的等差數列,又,所以.故選:A.【點睛】本題主要考查等差數列的基本量運算,屬于基礎題型.7、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C8、D【解析】利用兩點間的距離公式,將切線長的和轉化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎題.9、D【解析】根據一元二次不等式的解集的情況得出二次項系數大于零,根的判別式小于零,可得出,再將化為,由和均值不等式可求得最小值.【詳解】由題意可得:,,可以得到,而,可以令,則有,當且僅當取等號,所以的最小值為4.故答案為:4.【點睛】本題主要考查均值不等式,關鍵在于由一元二次不等式的解集的情況得出的關系,再將所求的式子運用不等式的性質降低元的個數,運用均值不等式,是中檔題.10、C【解析】由雙曲線的方程直接求出見解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C11、B【解析】直接利用直線垂直公式計算得到答案.【詳解】因為l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點睛】本題考查了根據直線垂直計算參數,屬于簡單題.12、D【解析】設出點坐標,結合導數列方程,由此求得切點坐標并求得切線的斜率.【詳解】設切點為,,故在點的切線的斜率為,所以,所以切點為,切線的斜率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】本題可先將直線的一般式化為斜截式,然后根據斜率即可得到直線的一個方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個方向向量可以寫為.故答案為:.14、【解析】先根據拋物線方程求出,進而求出準線方程.【詳解】拋物線為,則,解得:,準線方程為:.故答案為:15、【解析】連接,由得出直線與GF所成角,再由余弦定理得出直線與GF所成角的大小.【詳解】連接,因為,所以直線與GF所成角為.設,則,,,又異面直線的夾角范圍為,所以直線與GF所成角的大小是.故答案為:16、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據已知計算雙曲線的基本量,得雙曲線焦點坐標及漸近線方程,再用點到直線距離公式得解.(2)直線方程代入雙曲線方程,得到關于的一元二次方程,運用韋達定理弦長公式列方程得解.【小問1詳解】雙曲線離心率為,實軸長為2,,,解得,,,所求雙曲線C的方程為;∴雙曲線C的焦點坐標為,漸近線方程為,即為,∴雙曲線焦點到漸近線的距離為.【小問2詳解】設,,聯立,,,,,,解得18、(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)求出函數的導數,談論參數的范圍,根據導數的正負,可得單調區間;(2)由已知可解得,構造函數,再根據(1)的結論,可知函數的單調性,結合零點存在定理,可證明結論.【小問1詳解】定義域為,因為,若,,所以單調遞減區間為,若,,當時,,當時,,所以單調遞減區間為,單調遞增區間為【小問2詳解】證明:若且對任意,都有,則在處取得最小值,由(1)得在取得最小值,得,令,則單調性相同,單調遞減區間為,單調遞增區間為,且,,,所以在(1e2,所以在和各有且僅有一個零點,即方程有且只有兩個實根19、(1)(2)證明見解析【解析】(1)根據題意和雙曲線的定義求出,結合離心率求出b,即可得出雙曲線的標準方程;(2)設,根據兩點的坐標即可求出、,化簡計算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因為,所以,所以所以,雙曲線C的標準方程為小問2詳解】設,則因為,,所以,所以20、(1)(2)【解析】(1)根據拋物線的定義可得,求得,即可得出答案;(2)設,利用點差法求出直線l的斜率,再利用直線的點斜式方程即可得出答案.【小問1詳解】解:由拋物線定義可知:,解得:,∴C的方程為;【小問2詳解】解:設,則,兩式作差得,∴直線l的斜率,∵為的中點,∴,∴,∴直線l的方程為,即(經檢驗,所求直線符合條件).21、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 什么的淚水中考語文作文
- 電氣機械維修手冊與指南考核試卷
- 水電工程施工現場安全事故案例分析考核試卷
- 6-5 PLA和PAL電子課件教學版
- 玻璃纖維的制備工藝考核試卷
- 旅行初二語文作文
- 新材料在D打印領域的應用考核試卷
- 球類生產過程中的實時監控技術考核試卷
- 景區旅游市場開發與拓展策略考核試卷
- 生態保護工程生態保護與生態工程長期效益評估考核試卷
- 華為經營管理叢書華為的研發管理
- 2025年安徽國際商務職業學院單招職業技能考試題庫及答案1套
- 2024北京理工大附中高一(下)期中英語試題及答案
- 干洗店中央洗衣工廠崗位職責及管理手冊
- 2024年數學新高考I卷評析及教學建議
- 玉盤二部合唱簡譜
- 第十一單元課題1 化學與人體健康教學設計-2024-2025學年九年級化學人教版(2024)下冊
- 個人裝載機租賃協議書范本
- 2022年高級經濟師《運輸經濟》試題真題及答案
- 2023-2024學年滬科版(2019)高中信息技術必修一第三單元項目六《解決溫標轉換問題-認識程序和程序設計語言》教學設計
- 《豬的傳染病》課件
評論
0/150
提交評論