




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省大連大世界高中2024年高三下學期第三次模擬考試(5月)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.2.已知函數,則()A. B.1 C.-1 D.03.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.函數的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數的最小正周期是B.函數的圖象關于點成中心對稱C.函數在單調遞增D.函數的圖象向右平移后關于原點成中心對稱5.設為的兩個零點,且的最小值為1,則()A. B. C. D.6.已知是定義在上的奇函數,當時,,則()A. B.2 C.3 D.7.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.8.《九章算術》是我國古代內容極為豐富的數學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺9.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.10.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.11.已知,則下列關系正確的是()A. B. C. D.12.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,含項的系數為______.14.設為數列的前項和,若,,且,,則________.15.已知向量,,則______.16.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.18.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.19.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值20.(12分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.21.(12分)為了拓展城市的旅游業,實現不同市區間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。2、A【解析】
由函數,求得,進而求得的值,得到答案.【詳解】由題意函數,則,所以,故選A.【點睛】本題主要考查了分段函數的求值問題,其中解答中根據分段函數的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、B【解析】
由,可得,解出即可判斷出結論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數量積運算性質、三角函數求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.4、B【解析】
根據函數的圖象,求得函數,再根據正弦型函數的性質,即可求解,得到答案.【詳解】根據給定函數的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數的一個對稱中心為,即函數的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數的圖象求解函數的解析式,以及三角函數的圖象與性質,其中解答中根據函數的圖象求得三角函數的解析式,再根據三角函數的圖象與性質求解是解答的關鍵,著重考查了數形結合思想,以及運算與求解能力,屬于基礎題.5、A【解析】
先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.6、A【解析】
由奇函數定義求出和.【詳解】因為是定義在上的奇函數,.又當時,,.故選:A.【點睛】本題考查函數的奇偶性,掌握奇函數的定義是解題關鍵.7、B【解析】
構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.8、A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個四棱錐和1個直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數據分割與計算是解題的關鍵.9、D【解析】
首先判斷循環結構類型,得到判斷框內的語句性質,然后對循環體進行分析,找出循環規律,判斷輸出結果與循環次數以及的關系,最終得出選項.【詳解】經判斷此循環為“直到型”結構,判斷框為跳出循環的語句,第一次循環:;第二次循環:;第三次循環:,此時退出循環,根據判斷框內為跳出循環的語句,,故選D.【點睛】題主要考查程序框圖的循環結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區分程序框圖是條件分支結構還是循環結構;(3)注意區分當型循環結構和直到型循環結構;(4)處理循環結構的問題時一定要正確控制循環次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規定的運算方法逐次計算,直到達到輸出條件即可.10、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.11、A【解析】
首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.12、C【解析】
先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.14、【解析】
由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數列是以為首項,為公差的等差數列,所以.15、【解析】
求出,然后由模的平方轉化為向量的平方,利用數量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數量積的定義與運算律是解題基礎.本題關鍵是用數量積的定義把模的運算轉化為數量積的運算.16、【解析】
設直線l的方程為,,聯立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質,直線與拋物線的位置關系,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】
將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系,解題的關鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.18、(1)見解析;(2)【解析】
(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.19、(1)的普通方程為,的直角坐標方程為;(2).【解析】
(1)在曲線的參數方程中消去參數可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設直線的參數方程為(為參數),并設點、所對應的參數分別為、,利用韋達定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設直線的參數方程為(為參數),代入,得,則,設、兩點對應參數分別為、,,,,,.【點睛】本題考查了參數方程、極坐標方程與普通方程之間的轉化,同時也考查了直線參數方程幾何意義的應用,考查計算能力,屬于中等題.20、(1):,:;(2)【解析】
(1)根據點斜式寫出直線的直角坐標方程,并轉化為極坐標方程,利用,將曲線的參數方程轉化為普通方程.(2)將直線的參數方程代入曲線的普通方程,結合直線參數的幾何意義以及根與系數關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數方程為(為參數,為的傾斜角),代入曲線的普通方程,得.設,對應的參數分別為,,所以,在的兩側.則.【點睛】本小題主要考查直角坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省鹽城市大豐區大豐區萬盈鎮沈灶初級中學2025屆下學期初三英語試題第五次月考考試試卷含答案
- 石家莊科技職業學院《研究方法與論文寫作》2023-2024學年第二學期期末試卷
- 內蒙古豐州職業學院《跨境電子商務》2023-2024學年第二學期期末試卷
- 鐵嶺師范高等專科學校《量子力學A》2023-2024學年第二學期期末試卷
- 云南財經職業學院《土木工程智慧建造》2023-2024學年第二學期期末試卷
- 醫院財務人員培訓
- 遼寧省大連市金州區2024-2025學年七年級下學期4月月考生物試題(無答案)
- 中國電動汽車充電基礎設施發展戰略與路線圖研究(2021-2035)
- 2025新款授權房屋租賃合同范例
- 湖南省長沙市開福區2024-2025學年八年級上學期期末考試數學考試(含答案)
- 初中生職業生涯規劃課件兩篇
- 低利率時代家庭財富管理課件
- 北京七年級下學期生物期中考試試卷
- 拖欠房租起訴書【5篇】
- 護理人員儀容儀表及行為規范
- 汽車品牌馬自達課件
- 第六章廣播電視的傳播符號
- 儀器設備自校規程
- 鋼結構安裝工程檢驗批驗收記錄表(共14頁)
- 蘇教版五下數學小數報全套高清晰含答案
- 家庭《弟子規》力行表
評論
0/150
提交評論