貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷含解析_第1頁
貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷含解析_第2頁
貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷含解析_第3頁
貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷含解析_第4頁
貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省黔東南州重點達標名校2024屆中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.102.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°3.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個4.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π5.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.6.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.7.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.8.我國古代數(shù)學家劉徽用“牟合方蓋”找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的俯視圖是()A. B. C. D.9.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.10.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,3二、填空題(本大題共6個小題,每小題3分,共18分)11.數(shù)學綜合實踐課,老師要求同學們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.12.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.13.可燃冰是一種新型能源,它的密度很小,可燃冰的質(zhì)量僅為.數(shù)字0.00092用科學記數(shù)法表示是__________.14.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結(jié)OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.15.點G是三角形ABC的重心,,,那么=_____.16.如圖,AB是⊙O的切線,B為切點,AC經(jīng)過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.三、解答題(共8題,共72分)17.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)査發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設(shè)每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數(shù)式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?18.(8分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.19.(8分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值20.(8分)解方程:.21.(8分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)22.(10分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?23.(12分)如圖,A,B,C三個糧倉的位置如圖所示,A糧倉在B糧倉北偏東26°,180千米處;C糧倉在B糧倉的正東方,A糧倉的正南方.已知A,B兩個糧倉原有存糧共450噸,根據(jù)災(zāi)情需要,現(xiàn)從A糧倉運出該糧倉存糧的支援C糧倉,從B糧倉運出該糧倉存糧的支援C糧倉,這時A,B兩處糧倉的存糧噸數(shù)相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B兩處糧倉原有存糧各多少噸?(2)C糧倉至少需要支援200噸糧食,問此調(diào)撥計劃能滿足C糧倉的需求嗎?(3)由于氣象條件惡劣,從B處出發(fā)到C處的車隊來回都限速以每小時35公里的速度勻速行駛,而司機小王的汽車油箱的油量最多可行駛4小時,那么小王在途中是否需要加油才能安全的回到B地?請你說明理由.24.某初中學校舉行毛筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.2、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B3、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).4、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.5、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應(yīng)關(guān)系,避免錯選其他答案.6、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.7、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.8、A【解析】

根據(jù)俯視圖即從物體的上面觀察得得到的視圖,進而得出答案.【詳解】該幾何體的俯視圖是:.故選A.【點睛】此題主要考查了幾何體的三視圖;掌握俯視圖是從幾何體上面看得到的平面圖形是解決本題的關(guān)鍵.9、C【解析】

求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.10、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

根據(jù)題意作圖,可得AB=6cm,設(shè)正方體的棱長為xcm,則AC=x,BC=3x,根據(jù)勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據(jù)題意可得AB=6cm,

設(shè)正方體的棱長為xcm,則AC=x,BC=3x,

根據(jù)勾股定理,AB2=AC2+BC2,即,

解得故答案為:.【點睛】本題考查了勾股定理的應(yīng)用,正確理解題意是解題的關(guān)鍵.12、﹣2【解析】

連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點睛】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關(guān)鍵在于結(jié)合實際運用圓的相關(guān)性質(zhì).13、9.2×10﹣1.【解析】

根據(jù)科學記數(shù)法的正確表示為,由題意可得0.00092用科學記數(shù)法表示是9.2×10﹣1.【詳解】根據(jù)科學記數(shù)法的正確表示形式可得:0.00092用科學記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學記數(shù)法的正確表現(xiàn)形式,解決本題的關(guān)鍵是要熟練掌握科學記數(shù)法的正確表現(xiàn)形式.14、6【解析】

根據(jù)題意可以分別設(shè)出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關(guān)系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設(shè)過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.15、.【解析】

根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點G是△ABC的重心,根據(jù)重心的性質(zhì),即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質(zhì):三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎(chǔ)題目.16、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.三、解答題(共8題,共72分)17、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】

(1)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可得出結(jié)論;

(2)根據(jù)“每件商品每降價1元,商場平均每天可多售出2件”結(jié)合每件商品降價x元,即可找出日銷售量增加的件數(shù),再根據(jù)原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可列出關(guān)于x的一元二次方程,解之即可得出x的值,再根據(jù)盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設(shè)每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據(jù)題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達到2000元.【點睛】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找出數(shù)量關(guān)系列出一元二次方程(或算式).18、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;

(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.19、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點睛:本題考查切線的性質(zhì)、圓周角定理、垂徑定理、相似三角形的判定和性質(zhì)、解直角三角形等知識,解題關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.20、【解析】分析:此題應(yīng)先將原分式方程兩邊同時乘以最簡公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號,得.移項,得.合并同類項,得.系數(shù)化為1,得.經(jīng)檢驗,原方程的解為.點睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗.21、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數(shù)求出OC=100,根據(jù)山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數(shù)即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設(shè)PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數(shù)的實際應(yīng)用,中等難度,作出輔助線構(gòu)造直角三角形并熟練應(yīng)用三角函數(shù)是解題關(guān)鍵.22、(1)2000;(2)2米【解析】

(1)設(shè)未知數(shù),根據(jù)題目中的的量關(guān)系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設(shè)該項綠化工程原計劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設(shè)人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.23、(1)A、B兩處糧倉原有存糧分別是270,1噸;(2)此次調(diào)撥能滿足C糧倉需求;(3)小王途中須加油才能安全回到B地.【解析】

(1)由題意可知要求A,B兩處糧倉原有存糧各多少噸需找等量關(guān)系,即A處存糧+B處存糧=450噸,A處存糧的五分之二=B處存糧的五分之三,據(jù)等量關(guān)系列方程組求解即可;(2)分別求出A處和B處支援C處的糧食,將其加起來

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論