2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷含解析_第1頁
2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷含解析_第2頁
2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷含解析_第3頁
2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷含解析_第4頁
2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省甘南重點中學中考數學全真模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數互為相反數,那么圖中的值是().A. B. C. D.2.若關于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a<3B.a>3C.a<﹣3D.a>﹣33.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確4.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球5.某商品價格為元,降價10%后,又降價10%,因銷售量猛增,商店決定再提價20%,提價后這種商品的價格為()A.0.96元 B.0.972元 C.1.08元 D.元6.函數y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤37.已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤8.如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于()A.42° B.28° C.21° D.20°9.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|10.如圖,下列各三角形中的三個數之間均具有相同的規律,根據此規律,最后一個三角形中y與n之間的關系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+111.已知數a、b、c在數軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c12.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,等腰△ABC中,AB=AC=5,BC=8,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,BD的長為_____.14.化簡:=.15.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈到達點B,那么所用細線最短需要_____cm.16.關于x的方程kx2﹣(2k+1)x+k+2=0有實數根,則k的取值范圍是_____.17.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結果保留π).18.計算(5ab3)2的結果等于_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.(1)求雙曲線的解析式;(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.20.(6分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.21.(6分)為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數學小組隨機調查了一個班級,發現該班留守學生數量占全班總人數的20%,并將調查結果制成如下兩幅不完整的統計圖.該班共有名留守學生,B類型留守學生所在扇形的圓心角的度數為;將條形統計圖補充完整;已知該校共有2400名學生,現學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?22.(8分)為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規定每盒售價不得少于45元.根據以往銷售經驗發現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?23.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.當半圓D與數軸相切時,m=.半圓D與數軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.24.(10分)每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買10臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購,經調查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經預算決定購買節省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月,若每月要求總產量不低于2040噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.25.(10分)計算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)026.(12分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;27.(12分)如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經過點A、B、C.(1)求該拋物線的解析式;(2)根據圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數互為相反數可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.2、B【解析】試題分析:當x=0時,y=-5;當x=1時,y=a-1,函數與x軸在0和1之間有一個交點,則a-1>0,解得:a>1.考點:一元二次方程與函數3、A【解析】

根據題意先畫出相應的圖形,然后進行推理論證即可得出結論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.4、A【解析】

根據必然事件的概念:在一定條件下,必然發生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.5、B【解析】

提價后這種商品的價格=原價×(1-降低的百分比)(1-百分比)×(1+增長的百分比),把相關數值代入求值即可.【詳解】第一次降價后的價格為a×(1-10%)=0.9a元,第二次降價后的價格為0.9a×(1-10%)=0.81a元,∴提價20%的價格為0.81a×(1+20%)=0.972a元,故選B.【點睛】本題考查函數模型的選擇與應用,考查列代數式,得到第二次降價后的價格是解決本題的突破點;得到提價后這種商品的價格的等量關系是解決本題的關鍵.6、B【解析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.7、C【解析】

根據二次函數的性質逐項分析可得解.【詳解】解:由函數圖象可得各系數的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C8、B【解析】

利用OB=DE,OB=OD得到DO=DE,則∠E=∠DOE,根據三角形外角性質得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC進行計算即可.【詳解】解:連結OD,如圖,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,

∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故選:B.【點睛】本題考查了圓的認識:掌握與圓有關的概念(

弦、直徑、半徑、弧、半圓、優弧、劣弧、等圓、等弧等).也考查了等腰三角形的性質.9、D【解析】

分別利用整數指數冪的性質以及合并同類項以及積的乘方運算、絕對值的性質分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.【點睛】靈活運用整數指數冪的性質以及合并同類項以及積的乘方運算、絕對值的性質可以求出答案.10、B【解析】

∵觀察可知:左邊三角形的數字規律為:1,2,…,n,右邊三角形的數字規律為:2,22,…,2下邊三角形的數字規律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關系式是y=2n+n.故選B.【點睛】考點:規律型:數字的變化類.11、C【解析】

首先根據數軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.12、A【解析】

由等腰三角形三線合一的性質得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據正弦函數的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握等腰三角形三線合一的性質和平行線的性質及直角三角形的性質等知識點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2或【解析】

分兩種情況討論:(1)當時,,利用等腰三角形的三線合一性質和垂直平分線的性質可解;(2)當時,過點A作于點M,證明列比例式求出,從而得,再利用垂直平分線的性質得.【詳解】解:(1)當時,∵垂直平分,.(2)當時,過點A作于點,在與中,.故答案為或.【點睛】本題主要考查了等腰三角形的三線合一性質和線段垂直平分線的性質定理得應用.本題難度中等.14、2【解析】

根據算術平方根的定義,求數a的算術平方根,也就是求一個正數x,使得x2=a,則x就是a的算術平方根,特別地,規定0的算術平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術平方根,熟記定義是關鍵.15、1【解析】

要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.16、k≤.【解析】

分k=1及k≠1兩種情況考慮:當k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關鍵.17、3【解析】

過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-18、25a2b1.【解析】

代數式內每項因式均平方即可.【詳解】解:原式=25a2b1.【點睛】本題考查了代數式的乘方.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據等腰直角三角形的性質和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯立一次函數和反比例函數解析式得方程組,解方程組可得點C的坐標,根據圖象可得結論.【詳解】(1)∵點A在直線y1=1x﹣1上,∴設A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【點睛】本題考查了反比例函數和一次函數的綜合;熟練掌握通過求點的坐標進一步求函數解析式的方法;通過觀察圖象,從交點看起,函數圖象在上方的函數值大.20、(1)證明見解析(2)【解析】

(1)由點G是AE的中點,根據垂徑定理可知OD⊥AE,由等腰三角形的性質可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質求出FG的長,再由勾股定理即可求出FD的長.【詳解】(1)∵點G是AE的中點,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【點睛】本題考查了垂徑定理,等腰三角形的性質,切線的判定,解直角三角形,相似三角形的判定與性質,勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關鍵,證明證明△DAG∽△FDG是解(2)的關鍵.21、(1)10,144;(2)詳見解析;(3)96【解析】

(1)依據C類型的人數以及百分比,即可得到該班留守的學生數量,依據B類型留守學生所占的百分比,即可得到其所在扇形的圓心角的度數;(2)依據D類型留守學生的數量,即可將條形統計圖補充完整;(3)依據D類型的留守學生所占的百分比,即可估計該校將有多少名留守學生在此關愛活動中受益.【詳解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案為10,144;(2)10﹣2﹣4﹣2=2(人),如圖所示:(3)2400××20%=96(人),答:估計該校將有96名留守學生在此關愛活動中受益.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.22、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.23、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據題意由勾股定理即可解答(2)①根據題意可知半圓D與數軸相切時,只有一個公共點,和當O、A、B三點在數軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據題意如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數軸相切時,只有一個公共點,此時m=,當O、A、B三點在數軸上時,m=7+4=11,∴半圓D與數軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點睛】此題此題考勾股定理,切線的性質,等邊三角形的判定和性質,三角形的內心和外心,解題關鍵在于作輔助線24、(1)甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設備4臺,乙型設備6臺.【解析】

(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,根據購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元可列出方程組,解之即可;(2)設購買甲型設備臺,乙型設備臺,根據購買節省能源的新設備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因為公司要求每月的產量不低于2040噸,據此可得關于m的不等式,解之即可由m的值確定方案,然后進行比較,做出選擇即可.【詳解】(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元;(2)設購買甲型設備臺,乙型設備臺,則,∴,∵取非負整數,∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當時,購買資金為:(萬元),當時,購買資金為:(萬元),則最省錢的購買方案是選購甲型設備4臺,乙型設備6臺.【點睛】本題考查了二元一次方程組的應用,一元一次不等式的應用,弄清題意,找準等量關系、不等關系列出方程組與不等式是解題的關鍵.25、1【解析】

直接利用特殊角的三角函數值和負指數冪的性質、零指數冪的性質、二次根式的性質分別化簡得出答案.【詳解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【點睛】此題主要考查了實

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論