




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆陜西省武功縣長寧高級中學高一數學第二學期期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量,的夾角為,,,則向的值為()A.-2 B. C.4 D.2.設正實數滿足,則當取得最大值時,的最大值為()A.0 B.1 C. D.33.已知向量,,,且,則實數的值為A. B. C. D.4.已知向量,,則與的夾角為()A. B. C. D.5.已知a,b為不同的直線,為平面,則下列命題中錯誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.計算的值為().A. B. C. D.7.已知a、b、c分別是△ABC的內角A、B、C的對邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形8.若三棱錐的四個面都為直角三角形,平面,,,則三棱錐中最長的棱長為()A. B. C. D.9.將函數的圖象向右平移個單位長度得到圖象,則函數的解析式是()A. B.C. D.10.已知函數的值域為,且圖像在同一周期內過兩點,則的值分別為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.點關于直線的對稱點的坐標為_____.12.如果3個正整數可作為一個直角三角形三條邊的邊長,則稱這3個數為一組勾股數.現從1,2,3,4,5中任取3個不同的數,則這3個數構成一組勾股數的概率為.13.已知,則的最小值是__________.14.已知函數,的最小正周期是___________.15.已知,為銳角,且,則__________.16.函數的定義域為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范圍.18.是亞太區域國家與地區加強多邊經濟聯系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿易體制和減少區域間貿易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對會議的關注程度,隨機選取了100名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分組區間分別為,,,,).(1)求選取的市民年齡在內的人數;(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內的概率.19.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.20.已知{an}是等差數列,設數列{bn}的前n項和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通項公式;(2)令cn=anbn(n∈N*),求{cn}的前n項和Tn21.如圖,在長方體中,,點為的中點.(1)求證:直線平面;(2)求證:平面平面;(3)求直線與平面的夾角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
通過已知條件,利用向量的數量積化簡求解即可.【詳解】平面向量,的夾角為,或,則向量.故選:【點睛】本題考查向量數量積公式,屬于基礎題.2、B【解析】
x,y,z為正實數,且,根據基本不等式得,當且僅當x=2y取等號,所以x=2y時,取得最大值1,此時,,當時,取最大值1,的最大值為1,故選B.3、A【解析】
求出的坐標,由得,得到關于的方程.【詳解】,,因為,所以,故選A.【點睛】本題考查向量減法和數量積的坐標運算,考查運算求解能力.4、D【解析】
利用夾角公式計算出兩個向量夾角的余弦值,進而求得兩個向量的夾角.【詳解】設兩個向量的夾角為,則,故.故選:D.【點睛】本小題主要考查兩個向量夾角的計算,考查向量數量積和模的坐標表示,屬于基礎題.5、D【解析】
根據線面垂直與平行的性質與判定分析或舉出反例即可.【詳解】對A,根據線線平行與線面垂直的性質可知A正確.對B,根據線線平行與線面垂直的性質可知B正確.對C,根據線面垂直的性質知C正確.對D,當,時,也有可能.故D錯誤.故選:D【點睛】本題主要考查了空間中平行垂直的判定與性質,屬于中檔題.6、D【解析】
利用誘導公式以及特殊角的三角函數值可求出結果.【詳解】由誘導公式可得,故選D.【點睛】本題考查誘導公式求值,解題時要熟練利用“奇變偶不變,符號看象限”基本原則加以理解,考查計算能力,屬于基礎題.7、A【解析】
將原式進行變形,再利用內角和定理轉化,最后可得角B的范圍,可得三角形形狀.【詳解】因為在三角形中,變形為由內角和定理可得化簡可得:所以所以三角形為鈍角三角形故選A【點睛】本題考查了解三角形,主要是公式的變形是解題的關鍵,屬于較為基礎題.8、B【解析】
根據題意,畫出滿足題意的三棱錐,求解棱長即可.【詳解】因為平面,故,且,則為直角三角形,由以及勾股定理得:;同理,因為則為直角三角形,由,以及勾股定理得:;在保證和均為直角三角形的情況下,①若,則在中,由勾股定理得:,此時在中,由,及,不滿足勾股定理故當時,無法保證為直角三角形.不滿足題意.②若,則,又因為面ABC,面ABC,則,故面PAB,又面PAB,故,則此時可以保證也為直角三角形.滿足題意.③若,在直角三角形BCA中,斜邊AB=2,小于直角邊AC=,顯然不成立.綜上所述:當且僅當時,可以保證四棱錐的四個面均為直角三角形,故作圖如下:由已知和勾股定理可得:,顯然,最長的棱為.故選:B.【點睛】本題表面考查幾何體的性質,以及棱長的計算,涉及線面垂直問題,需靈活應用.9、C【解析】
由題意利用三角函數的圖象變換原則,即可得出結論.【詳解】由題意,將函數的圖象向右平移個單位長度,可得.故選C.【點睛】本題主要考查三角函數的圖像變換,熟記圖像變換原則即可,屬于常考題型.10、C【解析】
先利用可求出的值,再利用、兩點橫坐標之差的絕對值為周期的一半,計算出周期,再由可計算出的值,從而可得出答案.【詳解】由題意可知,,、兩點橫坐標之差的絕對值為周期的一半,則,,因此,,,故選C.【點睛】本題考查三角函數的解析式的求解,求解步驟如下:(1)求、:,;(2)求:根據題中信息求出最小正周期,利用公式求出的值;(3)求:將對稱中心點和最高、最低點的坐標代入函數解析式,若選擇對稱中心點,還要注意函數在該點附近的單調性.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設關于直線的對稱點的坐標為,再根據中點在直線上,且與直線垂直求解即可.【詳解】設關于直線的對稱點的坐標為,則中點為,則在直線上,故①.又與直線垂直有②,聯立①②可得.故.故答案為:【點睛】本題主要考查了點關于直線對稱的點坐標,屬于基礎題.12、.【解析】試題分析:從中任取3個不同的數,有,,,,,,,,,共10種,其中只有為勾股數,故這3個數構成一組勾股數的概率為.考點:用列舉法求隨機事件的概率.13、【解析】分析:利用題設中的等式,把的表達式轉化成,展開后,利用基本不等式求得y的最小值.詳解:因為,所以,所以(當且僅當時等號成立),則的最小值是,總上所述,答案為.點睛:該題考查的是有關兩個正數的整式形式和為定值的情況下求其分式形式和的最值的問題,在求解的過程中,注意相乘,之后應用基本不等式求最值即可,在做乘積運算的時候要注意乘1是不變的,如果不是1,要做除法運算.14、【解析】
先化簡函數f(x),再利用三角函數的周期公式求解.【詳解】由題得,所以函數的最小正周期為.故答案為【點睛】本題主要考查和角的正切和正切函數的周期的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.15、【解析】
由題意求得,再利用兩角和的正切公式求得的值,可得的值.【詳解】,為銳角,且,即,.再結合,則,故答案為.【點睛】本題主要考查兩角和的正切公式的應用,屬于基礎題.16、【解析】
由二次根式有意義,得:,然后利用指數函數的單調性即可得到結果.【詳解】由二次根式有意義,得:,即,因為在R上是增函數,所以,x≤2,即定義域為:【點睛】本題主要考查函數定義域的求法以及指數不等式的解法,要求熟練掌握常見函數成立的條件,比較基礎.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(Ⅰ)由條件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c關于A的三角函數,根據A的范圍和正弦函數的性質得出a+c的最值.【詳解】解(Ⅰ)銳角又,,由正弦定理得,∴.
∴的取值范圍為【點睛】本題主要考查正弦定理,余弦定理的應用,基本不等式的應用,屬于基礎題.18、(1)30人;(2).【解析】
(1)由頻率分布直方圖,先求出年齡在內的頻率,進而可求出人數;(2)先由分層抽樣,確定應從第3,4組中分別抽取3人,2人,記第3組的3名志愿者分別為,第4組的2名志愿者分別為,再用列舉法,分別列舉出總的基本事件,以及滿足條件的基本事件,基本事件個數比即為所求概率.【詳解】(1)由題意可知,年齡在內的頻率為,故年齡在內的市民人數為.(2)易知,第4組的人數為,故第3,4組共有50名市民,所以用分層抽樣的方法在50名志愿者中抽取5名志愿者,每組抽取的人數分別為:第3組;第4組.所以應從第3,4組中分別抽取3人,2人.記第3組的3名志愿者分別為,第4組的2名志愿者分別為,則從5名志愿者中選取2名志愿者的所有情況為,,,,,,,,,,共有10種.其中第4組的2名志愿者至少有一名志愿者被選中的有:,,,,,,,共有7種,所以至少有一人的年齡在內的概率為.【點睛】本題主要考查由頻率分布直方圖求頻數,以及古典概型的概率問題,會分析頻率分布直方圖,熟記古典概型的概率計算公式即可,屬于常考題型.19、(1)(2)【解析】
(1)根據離心率可得的關系,將點代入橢圓方程,可得橢圓方程;(2)直線方程與橢圓方程聯立,可得弦長.【詳解】(1),又,,即橢圓方程是,代入點,可得,橢圓方程是.(2)設直線方程是,聯立橢圓方程代入可得.【點睛】本題考查了橢圓方程和直線與橢圓的位置關系,涉及弦長公式,屬于簡單題.20、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)?2n+2【解析】
(2)運用數列的遞推式,以及等比數列的通項公式可得bn,{an}是公差為的等差數列,運用等差數列的通項公式可得首項和公差,可得所求通項公式;
(2)求得,由數列的錯位相減法求和,結合等比數列的求和公式,即可得到所求和.【詳解】(2)2bn=b2(2+Sn),bn≠0,n=2時,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2時,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相減可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,設{an}是公差為d的等差數列,a2b2=4,a7+b3=2即為a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n?2n﹣2,前n項和,,兩式相減可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化簡可得Tn=(n﹣2)2n+2.【點睛】本題考查等差數列和等比數列的通項公式和求和公式的運用,考查數列的遞推式和數列的錯位相減法求和,化簡運算能力,屬于中檔題.21、(1)見證明;(2)見證明;(3)【解析】
(1)連接,交于,則為中點,連接OP,可證明,從而可證明直線平面;(2)先證明AC⊥BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省杭州及周邊重點中學2024-2025學年高一下學期期中考試歷史試題(含答案)
- 四川省瀘州市合江縣2024-2025學年七年級下學期期中考試生物學試題(含答案)
- 保密協議模板
- 海口房屋買賣合同
- 個人公積金商業貸購房合同
- 15 我們不亂扔 公開課一等獎創新教學設計
- 幼兒表演性舞蹈創編實例
- 員工加班調休統計分析報告審核獎懲管理制度
- 蘇教版八年級上冊第七單元 生物和環境是統一體第十九章 生態系統第一節 生態系統的組成教案
- 人教版小學二年級上冊數學 第1單元 長度單位 教案
- 子宮內膜病變的診治課件
- 新形態一體化教材
- 室內設計原木風格研究現狀
- MOOC 涂附磨具-河南工業大學 中國大學慕課答案
- 車間班組長崗位競聘述職報告課件模板
- 山西省太原市2023-2024學年八年級下學期期中數學試題(無答案)
- 2020年春季學期云南省義務教育地方課程系列教材一年級下冊《童眼看云南》教案教學設計
- 2024春期國開電大法學本科《國際法》在線形考(形考任務1至5)試題及答案
- 食品采樣檢測流程
- 工程材料力學性能(束德林第三版)課后習題答案
- 開封文化藝術職業學院單招《職業技能測試》參考試題庫(含答案)
評論
0/150
提交評論