




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴州省麻江縣一中數學高一下期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對一切,恒成立,則實數的取值范圍是()A. B.C. D.2.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數量比為2∶1,現在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數是()A.8 B.12 C.16 D.243.在等比數列中,,,則()A.140 B.120 C.100 D.804.如果連續拋擲一枚質地均勻的骰子100次,那么第95次出現正面朝上的點數為4的概率為()A. B. C. D.5.已知直線的方程為,則該直線的傾斜角為()A. B. C. D.6.在等差數列中,如果,則數列前9項的和為()A.297 B.144 C.99 D.667.已知,則的值為()A. B. C. D.28.數列1,,,…,的前n項和為A. B. C. D.9.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.其中正確的命題是()A.①② B.②③ C.③④ D.④10.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與原正方體體積的比值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,內角,,所對的邊分別是,,,且,,則的值為__________.12.已知等比數列中,,,若數列滿足,則數列的前項和=________.13.已知當時,函數(且)取得最大值,則時,的值為__________.14.已知圓錐的母線長為1,側面展開圖的圓心角為,則該圓錐的體積是______.15.在數列中,,是其前項和,當時,恒有、、成等比數列,則________.16.已知正三棱錐的底面邊長為,側棱長為2,則該三棱錐的外接球的表面積_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數列的前項和為,滿足,數列滿足.(1)求數列、的通項公式;(2),求數列的前項和;(3)對任意的正整數,是否存在正整數,使得?若存在,請求出的所有值;若不存在,請說明理由.18.如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點.(1)證明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.19.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.20.已知過點且斜率為的直線與圓:交于,兩點.(1)求斜率的取值范圍;(2)為坐標原點,求證:直線與的斜率之和為定值.21.已知圓以原點為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點,過、兩點分別作直線的垂線交軸于、兩點,求線段的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先求得的取值范圍,根據恒成立問題的求解策略,將原不等式轉化為,再解一元二次不等式求得的取值范圍.【詳解】解:對一切,恒成立,轉化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點睛】本小題主要考查恒成立問題的求解策略,考查三角函數求最值的方法,考查一元二次不等式的解法,考查化歸與轉化的數學思想方法,屬于中檔題.2、D【解析】設放在該校門口的綠色公共自行車的輛數是x,則,解得x=1.故選D3、D【解析】
,計算出,然后將,得到答案.【詳解】等比數列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數列的基本量計算,屬于簡單題.4、B【解析】
由隨機事件的概念作答.【詳解】拋擲一枚質地均勻的骰子,出現正面朝上的點數為4,這個事件是隨機事件,每次拋擲出現的概率是相等的,都是,不會隨機拋擲次數的變化而變化.故選:B.【點睛】本題考查隨機事件的概率,屬于基礎題.5、B【解析】試題分析:直線的斜率,其傾斜角為.考點:直線的傾斜角.6、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點:等差數列性質及前n項和點評:本題考查了等差數列性質及前n項和,掌握相關公式及性質是解題的關鍵.7、B【解析】
根據兩角和的正切公式,結合,可以求出的值,用同角的三角函數的關系式中的平方和關系把等式變成分子、分母的齊次式形式,最后代入求值即可.【詳解】..故選:B【點睛】本題考查了同角的三角函數關系式的應用,考查了二倍角的正弦公式,考查了兩角和的正切公式,考查了數學運算能力.8、B【解析】
數列為,則所以前n項和為.故選B9、D【解析】
利用平面與平面垂直和平行的判定和性質,直線與平面平行的判斷,對選項逐一判斷即可.【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題.故選D.【點睛】本題考查平面與平面的位置關系,直線與平面的位置關系,考查空間想象力,屬于中檔題.10、C【解析】
根據三視圖還原出幾何體,得到是在正方體中,截去四面體,利用體積公式,求出其體積,然后得到答案.【詳解】根據三視圖還原出幾何體,如圖所述,得到是在正方體中,截去四面體設正方體的棱長為,則,故剩余幾何體的體積為,所以截去部分的體積與剩余部分的體積的比值為.故選:C.【點睛】本題考查了幾何體的三視圖求幾何體的體積;關鍵是正確還有幾何體,利用體積公式解答,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
利用余弦定理變形可得,從而求得結果.【詳解】由余弦定理得:本題正確結果:【點睛】本題考查余弦定理的應用,關鍵是能夠熟練應用的變形,屬于基礎題.12、【解析】試題分析:根據題意,由于等比數列中,,,則可知公比為,那么可知等比數列中,,,故可知,那么可知數列的前項和=1=,故可知答案為.考點:等比數列點評:主要是考查了等比數列的通項公式以及數列的求和的運用,屬于基礎題.13、3【解析】
先將函數的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關系,結合誘導公式以及求出的值.【詳解】,其中,當時,函數取得最大值,則,,所以,,解得,故答案為.【點睛】本題考查三角函數最值,解題時首先應該利用降冪公式、和差角公式進行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關系,結合誘導公式進行求解,考查計算能力,屬于中等題.14、【解析】
根據題意得,解得,求得圓錐的高,利用體積公式,即可求解.【詳解】設圓錐底面的半徑為,根據題意得,解得,所以圓錐的高,所以圓錐的體積.【點睛】本題主要考查了圓錐的體積的計算,以及圓錐的側面展開圖的應用,其中解答中根據圓錐的側面展開圖,求得圓錐的底面圓的半徑是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、.【解析】
由題意得出,當時,由,代入,化簡得出,利用倒數法求出的通項公式,從而得出的表達式,于是可求出的值.【詳解】當時,由題意可得,即,化簡得,得,兩邊取倒數得,,所以,數列是以為首項,以為公差的等差數列,,,則,因此,,故答案為:.【點睛】本題考查數列極限的計算,同時也考查了數列通項的求解,在含的數列遞推式中,若作差法不能求通項時,可利用轉化為的遞推公式求通項,考查分析問題和解決問題的能力,綜合性較強,屬于中等題.16、.【解析】
由題意推出球心O到四個頂點的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長為,底面外接圓半徑為側棱長為2,BE=1,在三角形ABE中,根據勾股定理得到:高AE得到球心O到四個頂點的距離相等,O點在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找幾何體中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)見解析;(3)存在,.【解析】
(1)利用可得,從而可得為等比數列,故可得其通項公式.用累加法可求的通項.(2)利用分組求和法可求,注意就的奇偶性分類討論.(3)根據的通項可得,故考慮的解可得滿足條件的的值.【詳解】(1)在數列中,當時,.當時,由得,因為,故,所以數列是以為首項,為公比的等比數列即.在數列中,當時,有,由累加法得,,.當時,也符合上式,所以.(2).當為偶數時,=;當為奇數時,=.(3)對任意的正整數,有,假設存在正整數,使得,則,令,解得,又為正整數,所以滿足題意.【點睛】給定數列的遞推關系,求數列的通項時,我們常需要對遞推關系做變形構建新數列(新數列的通項容易求得),常見的遞推關系、變形方法及求法如下:(1),用累加法;(2),可變形為,利用等比數列的通項公式可求的通項公式,兩種方法都可以得到的通項公式.(3)遞推關系式中有與前項和,可利用實現與之間的相互轉化.另外,數列不等式恒成立與有解問題,可轉化為數列的最值(或項的范圍)來處理.18、(1)見解析;(2).【解析】
(1)利用三角形中位線和可證得,證得四邊形為平行四邊形,進而證得,根據線面平行判定定理可證得結論;(2)以菱形對角線交點為原點可建立空間直角坐標系,通過取中點,可證得平面,得到平面的法向量;再通過向量法求得平面的法向量,利用向量夾角公式求得兩個法向量夾角的余弦值,進而可求得所求二面角的正弦值.【詳解】(1)連接,,分別為,中點為的中位線且又為中點,且且四邊形為平行四邊形,又平面,平面平面(2)設,由直四棱柱性質可知:平面四邊形為菱形則以為原點,可建立如下圖所示的空間直角坐標系:則:,,,D(0,-1,0)取中點,連接,則四邊形為菱形且為等邊三角形又平面,平面平面,即平面為平面的一個法向量,且設平面的法向量,又,,令,則,二面角的正弦值為:【點睛】本題考查線面平行關系的證明、空間向量法求解二面角的問題.求解二面角的關鍵是能夠利用垂直關系建立空間直角坐標系,從而通過求解法向量夾角的余弦值來得到二面角的正弦值,屬于常規題型.19、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結果試題解析:(1)證明:連結AC1交A1C于點F,則F為AC1中點又D是AB中點,連結DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積20、(1)(2)見解析【解析】
(1)根據圓心到直線的距離小于半徑得到答案.(2)聯立直線與圓方程:.韋達定理得計算,化簡得到答案.【詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯立直線與圓方程:.消去整理得.設,,根據韋達定理得.則.∴直線與的斜率之和為定值1.【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國暖通空調用溫度變送器數據監測研究報告
- 2025至2030年中國擠壓式連接頭數據監測研究報告
- 2025至2030年中國地球儀數據監測研究報告
- 2025至2030年中國商用微波爐數據監測研究報告
- 2025至2030年中國可視電話機數據監測研究報告
- 2025至2030年中國雙筒瓦數據監測研究報告
- 2025至2030年中國印刷機械專用變頻減速電動機數據監測研究報告
- 2025至2030年中國削筆機電機數據監測研究報告
- 了解行業內競爭環境的試題及答案
- 找到方向農業植保員試題及答案
- GB/T 5530-2005動植物油脂酸值和酸度測定
- 《職業病防治法》宣傳周職業健康防護知識培訓
- 二次消防改造工程合同協議書范本
- 某智慧城市政務云平臺項目建設方案
- 德勤業務管理流程優化咨詢報告課件
- 深靜脈導管維護流程
- 班級管理(第3版)教學課件匯總全套電子教案(完整版)
- TCVN-2622-越南建筑防火規范(中文版)
- 不負韶華只爭朝夕-一模考試反思 課件-2021-2022學年高中主題班會(共17張PPT)
- DB13(J)∕T 256-2018 農村氣代煤工程技術規程
- 金屬非金屬礦山從業人員安全生產培訓教材課件(PPT 75頁)
評論
0/150
提交評論