




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省迪慶州香格里拉中學2025屆高一下數(shù)學期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設數(shù)列的前項和為,且,則數(shù)列的前10項的和是()A.290 B. C. D.2.已知,則三個數(shù)、、由小到大的順序是()A. B.C. D.3.在中,a、b分別為內角A、B的對邊,如果,,,則()A. B. C. D.4.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則5.底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側棱長為2,E為PC的中點,則異面直線PA與BE所成角的余弦值為()A. B. C. D.6.已知雙曲線的焦點與橢圓的焦點相同,則雙曲線的離心率為()A. B. C. D.27.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓8.與直線垂直于點的直線的一般方程是()A. B. C. D.9.甲、乙兩名運動員分別進行了5次射擊訓練,成績如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運動員的平均成績分別用,表示,方差分別用,表示,則()A., B.,C., D.,10.在△ABC中,三個頂點分別為A(2,4),B(﹣1,2),C(1,0),點P(x,y)在△ABC的內部及其邊界上運動,則y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.直線和將單位圓分成長度相等的四段弧,則________.12.已知向量,,則______.13.已知向量,則與的夾角為______.14.已知等差數(shù)列,,,,則______.15.用數(shù)學歸納法證明時,從“到”,左邊需增乘的代數(shù)式是___________.16.若向量,,且,則實數(shù)______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點,且,若為的角平分線,求的取值范圍.18.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.19.已知圓以原點為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點,過、兩點分別作直線的垂線交軸于、兩點,求線段的長.20.如圖,在三棱柱中,各個側面均是邊長為的正方形,為線段的中點.(1)求證:直線平面;(2)求直線與平面所成角的余弦值;(3)設為線段上任意一點,在內的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.21.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應的x的取值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由得為等差數(shù)列,求得,得利用裂項相消求解即可【詳解】由得,當時,,整理得,所以是公差為4的等差數(shù)列,又,所以,從而,所以,數(shù)列的前10項的和.故選.【點睛】本題考查遞推關系求通項公式,等差數(shù)列的通項及求和公式,裂項相消求和,熟記公式,準確得是等差數(shù)列是本題關鍵,是中檔題2、C【解析】
比較三個數(shù)、、與的大小關系,再利用指數(shù)函數(shù)的單調性可得出、的大小,可得出這三個數(shù)的大小關系.【詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【點睛】本題考查指數(shù)冪的大小關系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調性來比較大小;(2)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調性來比較大小;(3)底數(shù)和指數(shù)都不相同時,可以利用中間值法來比較大小.3、A【解析】
先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.4、D【解析】
利用不等式的性質或舉反例的方法來判斷各選項中不等式的正誤.【詳解】對于A選項,若且,則,該選項錯誤;對于B選項,取,,,,則,均滿足,但,B選項錯誤;對于C選項,取,,則滿足,但,C選項錯誤;對于D選項,由不等式的性質可知該選項正確,故選:D.【點睛】本題考查不等式正誤的判斷,常用不等式的性質以及舉反例的方法來進行驗證,考查推理能力,屬于基礎題.5、B【解析】
可采用建立空間直角坐標系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標原點,DA方向為x軸,AB方向為y軸,OP為z軸,建立空間直角坐標系,,,由幾何關系可求得,,,,為中點,,,,答案選B.【點睛】解決異面直線問題常用兩種基本方法:異面直線轉化成共面直線、空間向量建系法6、B【解析】根據橢圓可以知焦點為,離心率,故選B.7、D【解析】原方程即即或故原方程表示兩個半圓.8、A【解析】由已知可得這就是所求直線方程,故選A.9、D【解析】
分別計算出他們的平均數(shù)和方差,比較即得解.【詳解】由題意可得,,,.故,.故選D【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.10、B【解析】
根據線性規(guī)劃的知識求解.【詳解】根據線性規(guī)劃知識,的最小值一定在的三頂點中的某一個處取得,分別代入的坐標可得的最小值是.故選B.【點睛】本題考查簡單的線性規(guī)劃問題,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】
將單位圓分成長度相等的四段弧,每段弧對應的圓周角為,計算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應的圓周角為或故答案為0【點睛】本題考查了直線和圓相交問題,判斷每段弧對應的圓周角為是解題的關鍵.12、【解析】
求出,然后由模的平方轉化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關鍵是用數(shù)量積的定義把模的運算轉化為數(shù)量積的運算.13、【解析】
設與的夾角為,由條件,平方可得,由此求得的值.【詳解】設與的夾角為,,則由,平方可得,解得,∴,故答案為.【點睛】本題主要考查兩個向量的數(shù)量積的定義,向量的模的定義,已知三角函數(shù)值求角的大小,屬于中檔題.14、【解析】
利用等差中項的基本性質求得,,并利用等差中項的性質求出的值,由此可得出的值.【詳解】由等差中項的性質可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質求值,考查計算能力,屬于基礎題.15、.【解析】
從到時左邊需增乘的代數(shù)式是,化簡即可得出.【詳解】假設時命題成立,則,當時,從到時左邊需增乘的代數(shù)式是.故答案為:.【點睛】本題考查數(shù)學歸納法的應用,考查推理能力與計算能力,屬于中檔題.16、【解析】
根據,兩個向量平行的條件是建立等式,解之即可.【詳解】解:因為,,且所以解得故答案為:【點睛】本題主要考查兩個向量坐標形式的平行的充要條件,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)32;(2)【解析】
由兩向量坐標以及向量共線,結合正弦定理,化簡可得(1)由,,代入原式化簡,即可得到答案;(2)在和在中,利用正弦定理,化簡可得,,代入原式,化簡即可得到,利用三角形的內角范圍結合三角函數(shù)的值域,即可求出的取值范圍.【詳解】向量與向量共線所以,由正弦定理得:.即,由于在中,,則,所以,由于,則.(1),.(2)因為,為的角平分線,所以,在中,,因為,所以,所以在中,,因為,所以,所以,則,因為,所以,所以,即的取值范圍為.【點睛】本題主要考查向量共線、正弦定理、二倍角公式、三角函數(shù)的值域等知識,考查學生轉化與求解能力,考查學生基本的計算能力,有一定綜合性.18、(1);(2)∠A=120°.【解析】
由正弦定理求得b,由余弦定理求得cos∠A,進而求出∠A的值.【詳解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因為,所以∠A=120°.【點睛】本題考查正弦定理、余弦定理的應用,屬基礎題,根據正弦定理求出b的值,是解題的關鍵.19、(1);(2).【解析】
(1)計算原點到直線的距離,作為圓的半徑,從而可得出圓的方程;(2)計算出圓心到直線的距離,利用勾股定理可計算出,過點作,垂足為,求出直線的傾斜角為,再利用銳角三角函數(shù)的定義可求出.【詳解】(1)把直線化為一般式,即,到直線的距離為,圓的半徑為,圓的方程為;(2)直線的一般方程為,點到直線的距離為,圓的半徑為,則,過點作,垂足為,.又的傾斜角為,,.因此,線段的長為.【點睛】本題考查圓的方程的求解,同時也考查了直線截圓所得弦長的計算,涉及了銳角三角函數(shù)的定義的應用,考查計算能力,屬于中等題.20、(1)見解析(2)(3)存在點,使,詳見解析【解析】
(1)設與的交點為,證明進而證明直線平面.(2)先證明直線與平面所成角的為,再利用長度關系計算.(3)過點作,證明平面,即,所以存在.【詳解】(1)設與的交點為,顯然為中點,又點為線段的中點,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,點在平面上的投影為點,直線與平面所成角的為,,,,.(3)過點作,又因為平面,平面,所以,平面,平面,平面,,所以存在點,使.【點睛】本題考查了立體幾何線面平行,線面夾角,動點問題,將線線垂直轉化為線面垂直是解題的關鍵.21、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解析】
(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時,求出內層函數(shù)的取值范圍,結合三角函數(shù)的圖象和性質,求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 首鋼股份電商協(xié)議書
- 船舶主機買賣協(xié)議書
- 俱樂部會長轉讓協(xié)議書
- 風水布局轉讓協(xié)議書
- 車輛質押免責協(xié)議書
- 企業(yè)公眾號轉讓協(xié)議書
- 金融貿易合伙協(xié)議書
- 項目收益分紅協(xié)議書
- 高中作業(yè)安全協(xié)議書
- 餐廳股權激勵協(xié)議書
- DB11T 2194-2023 防汛隱患排查治理規(guī)范在建工程
- 風機基礎降水施工實施方案
- 門禁系統(tǒng)施工技術方案
- 2024光熱電站化鹽操作標準
- 《嬰幼兒健康管理》課件-任務四 嬰幼兒健康檔案建設與管理
- 【出口退稅管理探究的國內外探究綜述4300字】
- 2024版小學語文新課程標準
- (工貿企業(yè))重大事故隱患考試試題及答案
- 水文地質技術員技能鑒定理論考試題庫-上(單選題)
- 工程造價員勞動合同
- 2024年保密教育線上培訓考試
評論
0/150
提交評論