




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東濟寧市兗州區(qū)高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某船從處向東偏北方向航行千米后到達處,然后朝西偏南的方向航行6千米到達處,則處與處之間的距離為()A.千米 B.千米 C.3千米 D.6千米2.已知a,b,,且,,則()A. B. C. D.3.已知分別是的邊的中點,則①;②;③中正確等式的個數(shù)為()A.0 B.1 C.2 D.34.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度5.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形6.已知數(shù)列{an}為等差數(shù)列,,=1,若,則=()A.22019 B.22020 C.22017 D.220187.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.已知向量a=(1,-1),bA.-1 B.0 C.1 D.29.《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天10.在中,角,,所對的邊分別為,,,則下列命題中正確命題的個數(shù)為()①若,則;②若,則為鈍角三角形;③若,則.A.1 B.2 C.3 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,的對邊分別為,,,若,則________.12.在△ABC中,,則________.13.已知向量,,若,則______;若,則______.14.函數(shù)的圖象過定點______.15.函數(shù)的最大值是__________.16.如圖,在內(nèi)有一系列的正方形,它們的邊長依次為,若,,則所有正方形的面積的和為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.18.(1)從2,3,8,9中任取兩個不同的數(shù)字,分別記為,求為整數(shù)的概率?(2)兩人相約在7點到8點在某地會面,先到者等候另一個人20分鐘方可離去.試求這兩人能會面的概率?19.若是各項均為正數(shù)的數(shù)列的前項和,且.(1)求,的值;(2)設(shè),求數(shù)列的前項和.20.已知向量,.(I)若,共線,求的值.(II)若,求的值;(III)當時,求與夾角的余弦值.21.在中,分別是角的對邊,且.(1)求的大小;(2)若,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
通過余弦定理可得答案.【詳解】設(shè)處與處之間的距離為千米,由余弦定理可得,則.【點睛】本題主要考查余弦定理的實際應(yīng)用,難度不大.2、A【解析】
利用不等式的基本性質(zhì)以及特殊值法,即可得到本題答案.【詳解】由不等式的基本性質(zhì)有,,故A正確,B不正確;當時,,但,故C、D不正確.故選:A【點睛】本題主要考查不等式的基本性質(zhì),屬基礎(chǔ)題.3、C【解析】分別是的邊的中點;故①錯誤,②正確故③正確;所以選C.4、D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.5、D【解析】
利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.6、A【解析】
根據(jù)等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)即可求出.【詳解】由題知∵數(shù)列{an}為等差數(shù)列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故選A.【點睛】本題考查了等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì),考查了運算能力和轉(zhuǎn)化能力,屬于中檔題,注意:若{an}為等差數(shù)列,且m+n=p+q,則,性質(zhì)的應(yīng)用.7、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.8、C【解析】
由向量的坐標運算表示2a【詳解】解:因為a=(1,-1),b=(-1,2故選C.【點睛】本題考查了向量的加法和數(shù)量積的坐標運算;屬于基礎(chǔ)題目.9、A【解析】
設(shè)蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項和為Bn.利用等比數(shù)列的前n項和公式及其對數(shù)的運算性質(zhì)即可得出..【詳解】設(shè)蒲的長度組成等比數(shù)列{an},其a1=3,公比為,其前n項和為An.莞的長度組成等比數(shù)列{bn},其b1=1,公比為2,其前n項和為Bn.則An,Bn,由題意可得:,化為:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估計2.3日蒲、莞長度相等,故選:A.【點睛】本題考查了等比數(shù)列的通項公式與求和公式在實際中的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.10、C【解析】
根據(jù)正弦定理和大角對大邊判斷①正確;利用余弦定理得到為鈍角②正確;化簡利用余弦定理得到③正確.【詳解】①若,則;根據(jù),則即,即,正確②若,則為鈍角三角形;,為鈍角,正確③若,則即,正確故選C【點睛】本題考查了正弦定理和余弦定理,意在考查學生對于正弦定理和余弦定理的靈活運用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用余弦定理與不等式結(jié)合的思想求解,,的關(guān)系.即可求解的值.【詳解】解:根據(jù)①余弦定理②由①②可得:化簡:,,,,,,此時,故得,即,.故答案為:.【點睛】本題主要考查了存在性思想,余弦定理與不等式結(jié)合的思想,界限的利用.屬于中檔題.12、【解析】
因為所以注意到:故.故答案為:13、6【解析】
由向量平行與垂直的性質(zhì),列出式子計算即可.【詳解】若,可得,解得;若,則,解得.故答案為:6;.【點睛】本題考查平面向量平行、垂直的性質(zhì),考查平面向量的坐標運算,考查學生的計算能力,屬于基礎(chǔ)題.14、【解析】
令真數(shù)為,求出的值,代入函數(shù)解析式可得出定點坐標.【詳解】令,得,當時,.因此,函數(shù)的圖象過定點.故答案為:.【點睛】本題考查對數(shù)型函數(shù)圖象過定點問題,一般利用真數(shù)為來求得,考查計算能力,屬于基礎(chǔ)題.15、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.16、【解析】
根據(jù)題意可知,可得,依次計算,,不難發(fā)現(xiàn):邊長依次為,,,,構(gòu)成是公比為的等比數(shù)列,正方形的面積:依次,,不難發(fā)現(xiàn):邊長依次為,,,,正方形的面積構(gòu)成是公比為的等比數(shù)列.利用無窮等比數(shù)列的和公式可得所有正方形的面積的和.【詳解】根據(jù)題意可知,可得,依次計算,,是公比為的等比數(shù)列,正方形的面積:依次,,邊長依次為,,,,正方形的面積構(gòu)成是公比為的等比數(shù)列.所有正方形的面積的和.故答案為:【點睛】本題考查了無窮等比數(shù)列的和公式的運用.利用邊長關(guān)系建立等式,找到公比是解題的關(guān)鍵.屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)周期為π,最大值為2.(2)【解析】
(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值為2;(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,當b=c=1時,等號成立.∴a2≥4﹣1=3,即a.則a的最小值為.【點睛】本題考查三角函數(shù)的恒等變換,余弦形函數(shù)的性質(zhì)的應(yīng)用,余弦定理和基本不等式的應(yīng)用,是中檔題.18、(1);(2)【解析】
(1)分別求出基本事件總數(shù)及為整數(shù)的事件數(shù),再由古典概型概率公式求解;(2)建立坐標系,找出會面的區(qū)域,用會面的區(qū)域面積比總區(qū)域面積得答案.【詳解】(1)所有的基本事件共有4×3=12個,記事件A={為整數(shù)},因為,則事件A包含的基本事件共有2個,∴p(A)=;(2)以x、y分別表示兩人到達時刻,則.兩人能會面的充要條件是.建立直角坐標系如下圖:∴P=.∴這兩人能會面的概率為.【點睛】本題考查古典概型與幾何概型概率的求法,考查數(shù)學轉(zhuǎn)化思想方法,是基礎(chǔ)題.19、(1)1,3;(2).【解析】
(1)當時,,解得.由數(shù)列為正項數(shù)列,可得.當時,,又,解得.由,解得;(2)由.可得.當時,.當時,,可得.由.利用裂項求和方法即可得出.【詳解】(1)當時,,解得.數(shù)列為正項數(shù)列,∴.當時,,又,解得.由,解得.(2),∴.∴.當時,.當時,.時也符合上式.∴..故.【點睛】本題考查了數(shù)列遞推關(guān)系、通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.20、(I);(II);(III)【解析】
(1)根據(jù)題意,由向量平行的坐標公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,則有,結(jié)合向量數(shù)量積的坐標可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根據(jù)題意,由x的值可得的坐標,由向量的坐標計算公式可得、和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 事業(yè)單位服務(wù)合同管理流程
- 大型活動食堂餐飲服務(wù)租賃合同
- 萬科物業(yè)租戶合同管理協(xié)議2025
- 河南省洛陽市2024-2025學年高二下學期期中考試歷史試卷(含答案)
- 2024-2025學年度江西省南昌中學(三經(jīng)路校區(qū))高一下學期期中考試歷史試題(含答案)
- 江蘇省淮安市2025屆高三11月第一次調(diào)研測試-生物試題(含答案)
- 精細專利代理人合作協(xié)議
- 初中數(shù)學探索三角形全等的條件第1課時課件2024-2025學年北師大版數(shù)學七年級下冊
- 第9課 遼、西夏與北宋并立 教學設(shè)計-2024-2025學年統(tǒng)編版(2024)七年級歷史下冊
- 英語Unit 3 This is Miss Li教案及反思
- 四年級下冊《心理健康教育》全冊教案
- 自愿離婚的協(xié)議范本5篇
- 商業(yè)運營服務(wù)合作協(xié)議
- 員工心理健康關(guān)懷與支持措施試題及答案
- 2025書畫藝術(shù)品交易合同范本
- 兒童支氣管哮喘診斷與防治指南(2025)解讀
- 2024-2025學年人教版七年級(下)期中數(shù)學試卷(考試范圍:第7~9章) (含解析)
- 安全生產(chǎn)“反三違”學習培訓
- 學生心理健康一生一策檔案表
- 網(wǎng)球裁判考試試題及答案
- 能源儲備體系建設(shè)-深度研究
評論
0/150
提交評論