山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷及答案解析_第1頁
山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷及答案解析_第2頁
山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷及答案解析_第3頁
山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷及答案解析_第4頁
山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷及答案解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省大同市云岡區重點名校畢業升學考試模擬卷數學卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>22.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發且運動速度相同,點M到點B時兩點同時停止運動,設點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數關系的圖象是()A. B.C. D.3.我國古代數學著作《九章算術》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設有x人合買,這件物品y元,則根據題意列出的二元一次方程組為()A. B. C. D.4.如圖,二次函數的圖象開口向下,且經過第三象限的點若點P的橫坐標為,則一次函數的圖象大致是A. B. C. D.5.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數為().A.60° B.75° C.85° D.90°6.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.7.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數學知識是()A.兩點之間的所有連線中,線段最短B.經過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經過一點有且只有一條直線與已知直線垂直8.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.9.如圖,圓O是等邊三角形內切圓,則∠BOC的度數是()A.60° B.100° C.110° D.120°10.如圖,直線l1∥l2,以直線l1上的點A為圓心、適當長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=()A.23° B.46° C.67° D.78°二、填空題(共7小題,每小題3分,滿分21分)11.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.12.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.13.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數y=(x>0)的圖象經過點D,且與邊BC交于點E,則點E的坐標為__.14.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是________.15.對于函數,我們定義(m、n為常數).例如,則.已知:.若方程有兩個相等實數根,則m的值為__________.16.如圖,身高是1.6m的某同學直立于旗桿影子的頂端處,測得同一時刻該同學和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.17.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應點的坐標為B'(2,0),則點A的對應點A'的坐標為___.三、解答題(共7小題,滿分69分)18.(10分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數的圖象上的概率.19.(5分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.20.(8分)為支援雅安災區,某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?21.(10分)為有效治理污染,改善生態環境,山西太原成為國內首個實現純電動出租車的城市,綠色環保的電動出租車受到市民的廣泛歡迎,給市民的生活帶來了很大的方便,下表是行駛路程在15公里以內時普通燃油出租車和純電動出租車的運營價格:車型起步公里數起步價格超出起步公里數后的單價普通燃油型313元2.3元/公里純電動型38元2元/公里張先生每天從家打出租車去單位上班(路程在15公里以內),結果發現,正常情況下乘坐純電動出租車比乘坐燃油出租車平均每公里節省0.8元,求張先生家到單位的路程.22.(10分)解方程組:.23.(12分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.24.(14分)計算:﹣|﹣2|+()﹣1﹣2cos45°

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.2、A【解析】

根據題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據函數解析式,A符合條件.故選A.【點睛】本題為動點問題的函數圖象,解答關鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數關系式.3、D【解析】

根據題意可以找出題目中的等量關系,列出相應的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.4、D【解析】【分析】根據二次函數的圖象可以判斷a、b、的正負情況,從而可以得到一次函數經過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數的圖象可知,,,當時,,的圖象經過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數的圖象與性質、一次函數的圖象與性質,認真識圖,會用函數的思想、數形結合思想解答問題是關鍵.5、C【解析】試題分析:根據旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數為85°.故選C.考點:旋轉的性質.6、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.7、B【解析】

本題要根據過平面上的兩點有且只有一條直線的性質解答.【詳解】根據兩點確定一條直線.故選:B.【點睛】本題考查了“兩點確定一條直線”的公理,難度適中.8、A【解析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.9、D【解析】

由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).10、B【解析】

根據圓的半徑相等可知AB=AC,由等邊對等角求出∠ACB,再由平行得內錯角相等,最后由平角180°可求出∠1.【詳解】根據題意得:AB=AC,∴∠ACB=∠ABC=67°,∵直線l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46o.故選B.【點睛】本題考查等腰三角形的性質,平行線的性質,熟練根據這些性質得到角之間的關系是關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.12、1或1【解析】

由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關系.此題難度不大,解題的關鍵是注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系,注意分類討論思想的應用.13、(-2,7).【解析】

解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).14、b<9【解析】

由方程有兩個不相等的實數根結合根的判別式,可得出,解之即可得出實數b的取值范圍.【詳解】解:方程有兩個不相等的實數根,

,

解得:.【點睛】本題考查的知識點是根的判別式,解題關鍵是牢記“當時,方程有兩個不相等的實數根”.15、【解析】分析:根據題目中所給定義先求,再利用根與系數關系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數、一次項系數和常數項.

△>0說明方程有兩個不同實數解,△=0說明方程有兩個相等實數解,△<0說明方程無實數解.實際應用中,有兩種題型(1)證明方程實數根問題,需要對△的正負進行判斷,可能是具體的數直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.16、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應用.17、(3,2)【解析】

根據平移的性質即可得到結論.【詳解】∵將線段AB沿x軸的正方向平移,若點B的對應點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點睛】本題考查了坐標與圖形變化-平移.解決本題的關鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.三、解答題(共7小題,滿分69分)18、見解析;.【解析】

(1)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數的圖象上的有、、這3種結果,點在函數的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.19、證明見解析【解析】試題分析:(1)根據已知求得∠BDF=∠BCD,再根據∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.20、(1)購買A型學習用品400件,B型學習用品600件.(2)最多購買B型學習用品1件【解析】

(1)設購買A型學習用品x件,B型學習用品y件,就有x+y=1000,20x+30y=26000,由這兩個方程構成方程組求出其解就可以得出結論.(2)設最多可以購買B型產品a件,則A型產品(1000﹣a)件,根據這批學習用品的錢不超過210元建立不等式求出其解即可.【詳解】解:(1)設購買A型學習用品x件,B型學習用品y件,由題意,得,解得:.答:購買A型學習用品400件,B型學習用品600件.(2)設最多可以購買B型產品a件,則A型產品(1000﹣a)件,由題意,得20(1000﹣a)+30a≤210,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論