




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省鄆城一中學2021-2022學年中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.2.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.3.實數﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.4.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:65.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.6.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣27.將拋物線y=A.y=-12C.y=-128.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.9.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.12510.已知,代數式的值為()A.-11 B.-1 C.1 D.11二、填空題(共7小題,每小題3分,滿分21分)11.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長為________.12.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數為()A.144° B.84° C.74° D.54°13.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2314.如圖,直線a、b相交于點O,若∠1=30°,則∠2=___15.如圖,某數學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.16.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.17.關于x的方程kx2﹣(2k+1)x+k+2=0有實數根,則k的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣19.(5分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).20.(8分)如圖,AB為⊙O的直徑,點C在⊙O上,AD⊥CD于點D,且AC平分∠DAB,求證:(1)直線DC是⊙O的切線;(2)AC2=2AD?AO.21.(10分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業.圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數點后一位,參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)22.(10分)如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A(2,5)在反比例函數的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.23.(12分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經過點B,交BC于另一點F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.24.(14分)關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.2、B【解析】
先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規則圖形面積轉化為規則圖形的面積.3、A【解析】
根據絕對值的性質進行解答即可.【詳解】實數﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數的性質,熟知絕對值的性質是解答此題的關鍵.4、C【解析】
根據AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.5、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.6、C【解析】
根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.7、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數解析式.8、C【解析】
根據軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.9、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.10、D【解析】
根據整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數式的值二、填空題(共7小題,每小題3分,滿分21分)11、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.12、B【解析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.13、1.【解析】
先根據概率公式得到2+x5+x=2【詳解】根據題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件14、30°【解析】因∠1和∠2是鄰補角,且∠1=30°,由鄰補角的定義可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.15、(50﹣).【解析】
過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.16、1.【解析】試題分析:把這兩個方程相加可得1a-1b=9,兩邊同時除以1可得a-b=1.考點:整體思想.17、k≤.【解析】
分k=1及k≠1兩種情況考慮:當k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關鍵.三、解答題(共7小題,滿分69分)18、【解析】
原式去括號合并得到最簡結果,把a與b的值代入計算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當a=1、b=﹣時,原式=12+(﹣)2=1+=.【點睛】考查了整式的加減-化簡求值,以及非負數的性質,熟練掌握運算法則是解本題的關鍵.19、(1);(2)【解析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.20、(1)證明見解析.(2)證明見解析.【解析】分析:(1)連接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,據此知OC∥AD,根據AD⊥DC即可得證;(2)連接BC,證△DAC∽△CAB即可得.詳解:(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切線;(2)連接BC,∵AB為⊙O的直徑,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB?AD,∵AB=2AO,∴AC2=2AD?AO.點睛:本題主要考查圓的切線,解題的關鍵是掌握切線的判定、圓周角定理及相似三角形的判定與性質.21、5.8【解析】
過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應用,先將實際問題抽象為數學問題,然后利用勾股定理和銳角三角函數的定義進行計算.22、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點坐標代入反比例函數解析式和一次函數解析式分別求出k和b的值;(2)、首先根據一次函數求出點B的坐標,然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數與反比例函數的綜合問題.23、(1)證明見解析;(2)【解析】試題分析:(1)過點O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產品購銷協議樣本
- 企業單位續簽合同流程
- 設備貸款抵押擔保合同
- 第5章 第1節 嘗試對生物進行分類(新教學設計)2023-2024學年七年級上冊生物(冀少版)
- 人音版九年級音樂上冊教學設計:5. 鈴兒響叮當的變遷
- 七年級生物下冊 第五單元 第12章 空中的生物 第2節 昆蟲教學設計1 (新版)蘇科版
- 藏族民間舞蹈的風格特點
- 八年級英語下冊 Module 8 Time off Unit 3 Language in use第五課時教學設計(新版)外研版
- 高中化學人教版 (2019)選擇性必修1第一節 反應熱教案配套
- 九年級歷史下冊 第一單元 第1課《“電氣時代”的到來》教學設計3 華東師大版
- 籃球協會章程和規章制度
- 技師學院高層次人才引進和管理辦法
- 水輪機選型畢業設計及solidworks建立轉輪模型
- 無創正壓通氣急診臨床實踐專家共識
- 【精選】人教版四年級下冊數學《脫式計算》(含簡便運算)專項練習題
- 常用檢驗項目的醫學決定水平
- 急診及重癥醫學-機械通氣
- YY/T 1248-2014乙型肝炎病毒表面抗體測定試劑(盒)(化學發光免疫分析法)
- 重癥醫學科各項規章制度匯編
- 平面位置(軸線)測量記錄表
- 處分通報范文員工處分通報范文4篇
評論
0/150
提交評論