




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
浙江省杭州市綜合中學高一數(shù)學文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知向量,,,若,則角(
)A. B. C. D.參考答案:D【分析】由向量點乘的公式帶入,可以得到,再由求出角的精確數(shù)值.【詳解】由,及可得,化簡得或又,則為唯一解,答案選D.【點睛】1、若向量,則向量點乘;2、解三角方程時,若,則或;3、解三角方程時尤其要注意角度的取值范圍.2.已知點A(1,-2),若向量與a=(2,3)同向,且,則點B的坐標為(
)·(A)(5,-4)
(B)(4,5)(C)(-5,-4)
(D)(5,4)參考答案:D3.下列給出函數(shù)與各組中,是同一個關于的函數(shù)的是(
)A.
B.C.
D.參考答案:C略4.方程的解所在的區(qū)間為(
)A.
B.
C.
D.參考答案:B5.已知0<a<1,m>1,則函數(shù)y=loga(x-m)的圖象大致為()
參考答案:B6.函數(shù)f(x)=log2(4x﹣x2)的單調(diào)遞減區(qū)間是()A.(﹣∞,0)∪(4,+∞) B.(0,4) C.(﹣∞,2)∪(4,+∞) D.(2,4)參考答案:A【考點】復合函數(shù)的單調(diào)性.【分析】令t=4x﹣x2>0,求得函數(shù)的定義域,且f(x)=g(t)=log2t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.【解答】解:令t=4x﹣x2>0,求得0<x<4,故函數(shù)的定義域為(0,4),且f(x)=g(t)=log2t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得t在定義域內(nèi)的減區(qū)間為(2,4),故選:A.【點評】本題主要考查復合函數(shù)的單調(diào)性,二次函數(shù)、對數(shù)函數(shù)的性質(zhì),屬于中檔題.7.下列四個集合中,是空集的是(
)(1).
(2).(3).
(4).參考答案:D選項A所代表的集合是并非空集,選項B所代表的集合是并非空集,選項C所代表的集合是并非空集,選項(4)中的方程無實數(shù)根;8.對賦值語句的描述正確的是()①可以給變量提供初值
②將表達式的值賦給變量③不能給同一變量重復賦值
④可以給一個變量重復賦值.A.①②③ B.①② C.②③④ D.①②④參考答案:D【考點】2K:命題的真假判斷與應用;EB:賦值語句.【分析】根據(jù)賦值語句的功能,逐一分析給定四個描述的真假,可得答案.【解答】解:賦值語句可以給變量提供初值,故①正確;賦值語句是將將表達式的值賦給變量.故②正確;賦值語句可以給同一變量重復賦值,故③錯誤;④正確;故選:D9.(
)A.
B.
C.
D.參考答案:B由誘導公式得故選.10.的展開式中的常數(shù)項為(
)A.12 B.﹣12 C.6 D.﹣6參考答案:A【分析】在二項展開式的通項公式中,令的冪指數(shù)等于0,求出的值,進而求得常數(shù)項.【詳解】解:展開式中的通項公式為,令,解得,故展開式中的常數(shù)項為,故選:A【點睛】本題考查二項式展開式的常數(shù)項,屬于基礎題.二、填空題:本大題共7小題,每小題4分,共28分11.公比為q的無窮等比數(shù)列{an}滿足:,,則實數(shù)k的取值范圍為________.參考答案:(-∞,-2)∪(0,+∞)【分析】依據(jù)等比數(shù)列的定義以及無窮等比數(shù)列求和公式,列出方程,即可求出的表達式,再利用求值域的方法求出其范圍。【詳解】由題意有,即,因,所以。【點睛】本題主要考查無窮等比數(shù)列求和公式的應用以及基本函數(shù)求值域的方法。12.數(shù)列的前項和,則它的通項公式是__________.參考答案:略13.將函數(shù)f(x)=sin(x+)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),再把得到的圖象向右平移個單位,得到的新圖象的函數(shù)解析式為g(x)=
,g(x)的單調(diào)遞減區(qū)間是
.參考答案:sin(2x+),(kπ+,kπ+),k∈Z【考點】HK:由y=Asin(ωx+φ)的部分圖象確定其解析式.【分析】利用三角函數(shù)的伸縮變換將y=sin(x+)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到函數(shù)y=sin(2x+)圖象,再利用平移變換可得g(x)的函數(shù)解析式,進而利用正弦函數(shù)的單調(diào)性即可得解.【解答】解:函數(shù)y=sin(x+)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到函數(shù)y=sin(2x+)圖象,再將函數(shù)y=sin(2x+)圖象向右平移個單位,所得圖象的函數(shù)解析式為g(x)=sin=sin(2x+),令2kπ+≤2x+≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得g(x)的單調(diào)遞減區(qū)間是:(kπ+,kπ+),k∈Z.故答案為:=sin(2x+),(kπ+,kπ+),k∈Z.14.已知,點P在直線上,且,則點P的坐標是_____.參考答案:(1,3)【分析】由題意可知,三點共線,且有,設出點的坐標,利用向量相等的條件建立方程求出點P的坐標【詳解】解:設,點P在直線上,,則有解得【點睛】本題考查向量共線的坐標表示,向量相等的條件.解題的關鍵是由題設條件得出兩向量的數(shù)乘關系,再利用向量相等的條件得出坐標的方程求出P的坐標.15.定義在R上的函數(shù),對任意x∈R都有,當時,,則________.參考答案:16.函數(shù)的定義域是___________.參考答案:17.已知A、B是半徑為5的圓O上的兩個定點,P是圓O上的一個動點,若AB=6,設PA+PB的最大值為,最小值為,則的值為
.參考答案:三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.試用函數(shù)單調(diào)性的定義證明:在(1,+∞)上是減函數(shù).參考答案:【考點】函數(shù)單調(diào)性的判斷與證明.【分析】先將原函數(shù)變成f(x)=2+,根據(jù)減函數(shù)的定義,設x1>x2>1,通過作差證明f(x1)<f(x2)即可.【解答】證明:f(x)=2+;設x1>x2>1,則:f(x1)﹣f(x2)=﹣=;∵x1>x2>1;∴x2﹣x1<0,x1﹣1>0,x2﹣1>0;∴f(x1)<f(x2);∴f(x)在(1,+∞)上是單調(diào)減函數(shù).19.(12分)已知⊙M:(x+1)2+y2=1,⊙N:(x﹣1)2+y2=9,動圓P與⊙M外切并且與⊙N內(nèi)切,圓心P的軌跡為曲線C.(1)求C的方程;(2)l是與⊙P、⊙M都相切的一條直線,當⊙P的半徑最長時,求直線l的方程.參考答案:考點: 軌跡方程;圓的切線方程.專題: 計算題;直線與圓.分析: (1)設動圓的半徑為R,由已知動圓P與圓M外切并與圓N內(nèi)切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由橢圓的定義可知:動點P的軌跡是以M,N為焦點,4為長軸長的橢圓,求出即可;(2)設曲線C上任意一點P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,當且僅當⊙P的圓心為(2,0)R=2時,其半徑最大,其方程為(x﹣2)2+y2=4.分①l的傾斜角為90°.②若l的傾斜角不為90°,由于⊙M的半徑1≠R,可知l與x軸不平行,確定Q(﹣4,0),設l:y=k(x+4),由l與M相切,可得結(jié)論.解答: (1)由圓M:(x+1)2+y2=1,可知圓心M(﹣1,0);圓N:(x﹣1)2+y2=9,圓心N(1,0),半徑3.設動圓的半徑為R,∵動圓P與圓M外切并與圓N內(nèi)切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由橢圓的定義可知:動點P的軌跡是以M,N為焦點,4為長軸長的橢圓,∴a=2,c=1,b2=a2﹣c2=3.∴曲線C的方程為(去掉點(﹣2,0))(2)設曲線C上任意一點P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,當且僅當⊙P的圓心為(2,0),R=2時,其半徑最大,其方程為(x﹣2)2+y2=4.①l的傾斜角為90°,直線l的方程為x=0.②若l的傾斜角不為90°,由于⊙M的半徑1≠R,可知l與x軸不平行,設l與x軸的交點為Q,則=,可得Q(﹣4,0),所以可設l:y=k(x+4),由l與M相切可得:=1,解得k=±.∴直線l的方程為y=±(x+4),綜上可知,直線l的方程為y=±(x+4)或x=0.點評: 本題綜合考查了兩圓的相切關系、直線與圓相切等基礎知識,需要較強的推理能力和計算能力及其分類討論的思想方法.20.已知數(shù)列的首項為=3,通項與前n項和之間滿足2=·(n≥2)。(1)求證:是等差數(shù)列,并求公差;(2)求數(shù)列的通項公式。參考答案:解:(1)2()=∴是等差數(shù)列,且公差為-(2)當n=1時,a1=3當n≥2時,an=S-Sn-1=略21.已知點關于x軸的對稱點為,關于原點的對稱點為.(1)求△ABC中過AB,BC邊上中點的直線方程;(2)求△ABC的面積.參考答案:(1)(2)10【分析】(1)根據(jù)題意,分別求出點與點坐標,進而可得的中點坐標,的中點坐標,由兩點式,即可求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特價出售設備合同協(xié)議
- 班車車輛承運合同協(xié)議
- 用人試用期合同協(xié)議
- 電腦分期買賣合同協(xié)議
- 瓜子產(chǎn)地購銷合同協(xié)議
- 電梯管理聘用合同協(xié)議
- 牽制合同補充協(xié)議范本
- 生物醫(yī)療研發(fā)合同協(xié)議
- 班車司機租賃合同協(xié)議
- 班組代表勞動合同協(xié)議
- 無人機失控應急事件處置預案
- 駐廠協(xié)議書模板
- 樹木清除合同協(xié)議
- 2024年韶關市始興縣事業(yè)單位招聘工作人員筆試真題
- 安徽省皖南八校2024-2025學年高一下學期4月期中考試數(shù)學試題
- 國家發(fā)展改革委低空經(jīng)濟司
- 單位體檢協(xié)議書模板合同
- 委托律師簽署協(xié)議書
- 圖文工廠轉(zhuǎn)讓協(xié)議書
- 貨物貿(mào)易的居間合同
- 2025-2030中國療養(yǎng)院行業(yè)市場深度分析及前景趨勢與投資研究報告
評論
0/150
提交評論