2024年浙江省寧波市中考數學沖刺演練試卷(八)_第1頁
2024年浙江省寧波市中考數學沖刺演練試卷(八)_第2頁
2024年浙江省寧波市中考數學沖刺演練試卷(八)_第3頁
2024年浙江省寧波市中考數學沖刺演練試卷(八)_第4頁
2024年浙江省寧波市中考數學沖刺演練試卷(八)_第5頁
已閱讀5頁,還剩1頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第1頁(共1頁)2024年浙江省寧波市中考數學沖刺演練試卷(八)一、選擇題:本大題有10個小題,每小題3分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.一年之中地球與太陽之間的距離隨時間而變化,地球與太陽之間的平均距離約為149600000km.數據149600000用科學記數法表示為()A.14.96×107 B.1.496×108 C.0.149×109 D.1.496×1072.=()A.0 B.2 C.4 D.83.某巖石由多種物質混合而成,為介紹該巖石中各物質所占的百分比,最適合使用的統計圖是()A.條形統計圖 B.折線統計圖 C.扇形統計圖 D.頻數分布直方圖4.若一個三角形一條邊上的中線等于這條邊所對應的中位線,則這個三角形一定是()A.等腰三角形 B.等邊三角形 C.等腰直角三角形 D.直角三角形5.下列運算或化簡正確的是()A. B. C. D.6.對某校701班學生的年齡進行統計,結果如下:平均數為m歲,中位數和眾數均為n歲,則下列關于他們年齡的說法正確的是()A.平均數為m歲,眾數為(n+2)歲 B.中位數為(n+2)歲,標準差為s歲 C.眾數為(n+2)歲,標準差為(s+2)歲 D.平均數為(m+2)歲,中位數為n歲7.在直角坐標系中,已知點A(m,n),B(p,q),其中m,n,p,點B關于x軸的對稱點D.若直線CD經過原點,則下列關系式正確的是()A. B.m+n=p+q C. D.m﹣n=p﹣q8.如圖,在△ABC中,已知∠ABC=90°,BC=,以點C為圓心,交AC于點D;以點A為圓心,交AB于點E,連接BD.則圖中下列線段的長一定是關于x的一元二次方程x2+nx=m2的一個根的是()A.AE B.BE C.CD D.BD9.已知二次函數y1=(x+a)(x+b),y2=(ax+1)(bx+1)(其中0<a<1,b≤﹣1).下列說法正確的是()A.函數y2的圖象的開口向上 B.函數y1和y2的圖象的對稱軸有可能相同 C.若函數y1和y2的圖象交于x軸上的同一點,則該交點坐標可能為(1,0)或(﹣1,0) D.當﹣1<x<1時,y1<y210.如圖,將矩形ABCD沿對角線BD折疊,使得點C落于點E,線段CE分別交AD,BD于點F,G,FH交BD于點I.若FC=BI,則的值是()A. B. C. D.二、填空題:本大題有6個小題,每小題3分,共18分.11.計算:(﹣2a)2=.12.如圖,直線AB∥CD,直線EF分別交AB,F,點G,H分別在射線FC,且FE=FG=FH.若∠AEG=62°,則∠EHD=.13.已知a=+1,b=,則a2+b2+3ab=.14.如圖,四邊形ABCD與四邊形DCEF均為邊長等于1的正方形,連接點A,B,C,D,E,在連接兩點所得的所有線段中任取一條線段,取到長度為無理數的線段的概率為.15.設反比例函數y=(k≠0),已知函數值y和自變量x的部分對應取值如表所示(m,n為正整數,且m≠n),則k=.x…mn…y…m﹣3n﹣3…16.如圖,已知圓O的半徑為1,A為圓O上任意一點,在圓O上順次截取==.分別以A,以AC長為半徑作弧,交于點E,OE的長為半徑作弧,交于點F.連接AD,AF,延長DC,交于點G,則∠G=度,FC=.三、解答題:本大題有8個小題,共72分.解答應寫出文字說明、證明過程或演算步驟.17.定義:若非零實數a,b,c滿足,則稱c是a和b的“協調數”.如4是3和6的“協調數”.(1)問:是不是﹣2和﹣3的“協調數”?(2)若2m是p和q的“協調數”,用m,q的代數式表示q.18.某校為了解八年級學生的體能情況,通過簡單隨機抽樣抽取了100名學生進行一分鐘跳繩個數的測試,并將他們的成績記錄下來.將獲得的數據按從小到大的順序排列序號12…2526…5051…7576…99100個數9093…113114…140142…171172…205210(1)求這組數據的中位數.(2)圓圓在本次一分鐘跳繩測試中跳了160個,已經超過了參與測試學生人數的一半,但是仍未達到這組數據的平均數(3)為了鼓勵學生積極鍛煉、增強體能,學校對跳繩成績前25%的學生進行獎勵,你覺得跳繩個數標準應該定為多少?請說明理由.19.如圖,在△ABC中,已知∠ACB=90°,AE平分∠BAC,交BC于點E.(1)求證:CE=CF;(2)若AC=6,AB=10,求△ACE與△ABE的面積之比.20.在平面直角坐標系中,設函數y1=﹣x+m(m是實數),,已知函數y1和函數y2的圖象都經過點A(1,m﹣1)和點B(3,n).(1)求函數y1和y2的解析式.(2)已知點C(a,b),D(c,d)在函數y2的圖象上,設1<a<c<3,且a+c=4,P(b+d),求證:.21.如圖,在正方形ABCD中,E為AD的中點,連接BE,BF.以點B為圓心、BE為半徑畫圓弧,連接BG.(1)求tan∠EBC的值;(2)求證:∠GBE=∠FBC;(3)求證:BE2=2AE?FB.22.在平面直角坐標系中,設二次函數y1=(x﹣m)2﹣n(x﹣m),其中m為實數,n>0.(1)若n=2,函數y1的圖象經過點(2,3),求函數y1的解析式.(2)求函數y1的最小值(結果用含n的代數式表示).(3)設函數y2=x﹣m,若函數y1的圖象與x軸交于A,B兩點,函數y1與函數y2的圖象交于A,C兩點.設點B,C的橫坐標分別為p,q23.綜合與實踐.[探究1]透鏡焦距:f物距u像的正/倒像的放/縮像的虛/實像距vu>2f倒立縮小實像v<2fu=2f倒立等大實像v=2ff<u<2f倒立放大實像v>2f圓圓在復習“凸透鏡成像規律”(如圖1所示,記凸透鏡的焦距為f,蠟燭到凸透鏡的距離為u(像)到凸透鏡的距離為v)時發現,當u>f時(包含u和f).圓圓認為2f為u和v的某種平均數,為了驗證自己的想法,圖2表示:當f=5cm時,v關于u之間的函數解析式(u>5cm).問題1:根據圖象,圓圓發現:當f=5cm時,v﹣5和u﹣5成反比例關系.①求v關于u的函數解析式.②當u=17.5cm時,求v的值.【探究2】圓圓推測:在一般情形下,當u>f時,v﹣f和u﹣f成反比例2,由此得到關系式(v﹣f)(u﹣f)=f2,進而得到關系式.根據圖3所示的光路圖(u>f)可以抽象得到圖4.問題2:如圖4,AB⊥BB′,A′B′⊥BB′,交BB′于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論