




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆江蘇省無錫市塔影中學八年級數(shù)學第二學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在中,點、分別為邊、的中點,若,則的長度為()A.2 B.3 C.4 D.52.如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,若BE=2,BF=3,?ABCD的周長為20,則平行四邊形的面積為()A.12 B.18 C.20 D.243.對于任意不相等的兩個實數(shù),,定義運算如下:.如果,那么的值為()A. B. C. D.4.如圖,點P是邊長為2的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則MP+PN的最小值是()A.1 B.2 C.22 D.5.一次函數(shù)的圖像經(jīng)過()A.第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限6.要使式子有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣17.下列事件中,屬于必然事件的是()A.某校初二年級共有480人,則至少有兩人的生日是同一天B.經(jīng)過路口,恰好遇到紅燈C.打開電視,正在播放動畫片D.拋一枚硬幣,正面朝上8.下列說法:①實數(shù)和數(shù)軸上的點是一一對應的;②無理數(shù)是開方開不盡的數(shù);③負數(shù)沒有立方根;④16的平方根是±4,用式子表示是=±4;⑤某數(shù)的絕對值,相反數(shù),算術平方根都是它本身,則這個數(shù)是0,其中錯誤的是()A.0個 B.1個 C.2個 D.3個9.用配方法解一元二次方程x2-8x+2=0,此方程可化為的正確形式是().A.(x-4)2=14 B.(x-4)2=18 C.(x+4)2=14 D.(x+4)2=1810.若四邊形的兩條對角線相等,則順次連接該四邊形各邊中點所得的四邊形是()A.梯形 B.矩形 C.菱形 D.正方形11.甲、乙、丙三種糖果的售價分別為每千克6元、7元、8元,若將甲種8千克,乙種10千克,丙種3千克混在一起,則售價應定為每千克()A.7元 B.6.8元 C.7.5元 D.8.6元12.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.3二、填空題(每題4分,共24分)13.點P在第四象限內(nèi),P到軸的距離是3,到軸的距離是5,那么點P的坐標為.14.函數(shù)y=kx+b的圖象平行于直線y=-2x,且與y軸交于點(0,3),則k=______,b=____.15.若關于x的方程=-3有增根,則增根為x=_______.16.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是.17.設甲組數(shù):1,1,2,5的方差為S甲2,乙組數(shù)是:6,6,6,6的方差為S乙2,則S甲2與S乙2的大小關系是S甲2_____S乙2(選擇“>”、“<”或“=”填空).18.在一個扇形統(tǒng)計圖中,表示種植蘋果樹面積的扇形的圓心角為,那么蘋果樹面積占總種植面積的___.三、解答題(共78分)19.(8分)如圖,?ABCD中,DF平分∠ADC,交BC于點F,BE平分∠ABC,交AD于點E.(1)求證:四邊形BFDE是平行四邊形;(2)若∠AEB=68°,求∠C.20.(8分)某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.根據(jù)圖示填寫下表:平均數(shù)分中位數(shù)分眾數(shù)分A校______85______B校85______100結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學校的決賽成績較好;計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.21.(8分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,建立平面直角坐標系xOy,ABC的三個頂點的坐標分別為A(2,4),B(1,1),C(4,2).(1)平移ABC,使得點A的對應點為A1(2,﹣1),點B,C的對應點分別為B1,C1,畫出平移后的A1B1C1;(2)在(1)的基礎上,畫出A1B1C1繞原點O順時針旋轉(zhuǎn)90°得到的A2B2C2,其中點A1,B1,C1的對應點分別為A2,B2,C2,并直接寫出點C2的坐標.22.(10分)如圖,用兩張等寬的紙條交叉重疊地放在一起,重合的四邊形是一個特殊的四邊形.請判斷這個特殊的四邊形應該叫做什么,并證明你的結(jié)論.23.(10分)計算:(1);(2)+(3﹣2)(3+2)24.(10分)某G20商品專賣店每天的固定成本為400元,其銷售的G20紀念徽章每個進價為3元,銷售單價與日平均銷售的關系如下表:銷售單價(元)45678910日平均銷售量(瓶)560520480440400360320(1)設銷售單價比每個進價多x元,用含x的代數(shù)式表示日銷售量.(2)若要使日均毛利潤達到1840元(毛利潤=總售價﹣總進價﹣固定成本),且盡可能多的提升日銷售量,則銷售單價應定為多少元?25.(12分)如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點D從點C出發(fā)沿CA方向以每秒4個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒2個單位長的速度向點B勻速運動,當其中一個點到達終點,另一個點也隨之停止運動,設點D、E運動的時間是t秒(t>0),過點D作DF⊥BC于點F,連接DE、EF.(1)求證:AE=DF;(2)當四邊形BFDE是矩形時,求t的值;(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.×26.已知:如圖,在?ABCD中,AD=4,AB=8,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于點G.(1)求證:△ADE≌△CBF;(2)若四邊形BEDF是菱形,求四邊形AGBD的面積.
參考答案一、選擇題(每題4分,共48分)1、C【解題分析】
根據(jù)三角形中位線定理計算即可.【題目詳解】解:∵、分別為邊、的中點,,
∴BC=2DE=4,
故選C.【題目點撥】本題考查的是三角形中位線定理的應用,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.2、A【解題分析】
根據(jù)平行四邊形的周長求出AD+CD,再利用面積列式求出AD、CD的關系,然后求出AD的長,再利用平行四邊形的面積公式列式計算即可得解.【題目詳解】解:∵?ABCD的周長為20,∴2(AD+CD)=20,∴AD+CD=10①,∵S?ABCD=AD?BE=CD?BF,∴2AD=3CD②,聯(lián)立①、②解得AD=6,∴?ABCD的面積=AD?BE=6×2=1.故選:A.【題目點撥】本題考查平行四邊形的性質(zhì),解題的關鍵是掌握平行四邊形的性質(zhì).3、B【解題分析】
根據(jù)列式計算即可.【題目詳解】∵,∴=.故選B.【題目點撥】本題考查了新定義運算及二次根式的性質(zhì),理解是解答本題的關鍵.4、B【解題分析】
先作點M關于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值.然后證明四邊形ABNM′為平行四邊形,即可求出MP+NP=M′N=AB=1.【題目詳解】解:如圖,作點M關于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值,最小值為M′N的長.
∵菱形ABCD關于AC對稱,M是AB邊上的中點,
∴M′是AD的中點,
又∵N是BC邊上的中點,
∴AM′∥BN,AM′=BN,
∴四邊形ABNM′是平行四邊形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值為1,
故選:B.【題目點撥】本題考查的是軸對稱-最短路線問題及菱形的性質(zhì),熟知兩點之間線段最短的知識是解答此題的關鍵.5、D【解題分析】
根據(jù)一次函數(shù)的性質(zhì)k<0,則可判斷出函數(shù)圖象y隨x的增大而減小,再根據(jù)b>0,則函數(shù)圖象一定與y軸正半軸相交,即可得到答案.【題目詳解】解:∵一次函數(shù)y=-2x+3中,k=-2<0,則函數(shù)圖象y隨x的增大而減小,
b=3>0,則函數(shù)圖象一定與y軸正半軸相交,
∴一次函數(shù)y=-2x+3的圖象經(jīng)過第一、二、四象限.
故選:D.【題目點撥】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b的圖象經(jīng)過的象限由k、b的值共同決定,分如下四種情況:①當k>0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當k>0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象.6、C【解題分析】
根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于1,可得答案.【題目詳解】要使有意義,得x-1≥1.解得x≥1,故選C.考點:二次根式有意義的條件.7、A【解題分析】A.某校初二年級共有480人,則至少有兩人的生日是同一天;屬于必然事件;B.經(jīng)過路口,恰好遇到紅燈;屬于隨機事件;C.打開電視,正在播放動畫片;屬于隨機事件;D.拋一枚硬幣,正面朝上;屬于隨機事件。故選A.8、D【解題分析】
①實數(shù)和數(shù)軸上的點是一一對應的,正確;②無理數(shù)是開方開不盡的數(shù),錯誤;③負數(shù)沒有立方根,錯誤;④16的平方根是±4,用式子表示是±=±4,錯誤;⑤某數(shù)的絕對值,相反數(shù),算術平方根都是它本身,則這個數(shù)是0,正確.錯誤的一共有3個,故選D.9、A【解題分析】
依據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方求解可得.【題目詳解】解:x2-8x+2=0,x2-8x=-2,x2-8x+16=-2+16,(x-4)2=14,故選A.移項,配方,即可得出選項.【題目點撥】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用,能夠正確配方是解此題的關鍵.10、C【解題分析】
如圖,AC=BD,E、F、G、H分別是線段AB、BC、CD、AD的中點,則EH、FG分別是△ABD、△BCD的中位線,EF、HG分別是△ACD、△ABC的中位線,根據(jù)三角形的中位線的性質(zhì)知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四邊形EFGH是菱形.故選C.11、B【解題分析】
根據(jù)加權(quán)平均數(shù)的計算方法:先求出所有糖果的總錢數(shù),再除以糖果的總質(zhì)量,即可得出答案.【題目詳解】售價應定為:≈6.8(元);故選B.【題目點撥】本題考查的是加權(quán)平均數(shù)的求法.本題易出現(xiàn)的錯誤是對加權(quán)平均數(shù)的理解不正確,而求6、7、8這三個數(shù)的平均數(shù).12、C【解題分析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【題目詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【題目點撥】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關鍵.二、填空題(每題4分,共24分)13、(5,-1).【解題分析】試題分析:已知點P在第四象限,可得點P的橫、縱坐標分別為正數(shù)、負數(shù),又因為點P到x軸的距離為1,到y(tǒng)軸的距離為5,所以點P的橫坐標為5或-5,縱坐標為1或-1.所以點P的坐標為(5,-1).考點:各象限內(nèi)點的坐標的特征.14、-23【解題分析】試題解析:∵y=kx+b的圖象平行于直線y=?2x,∴k=?2,則直線y=kx+b的解析式為y=?2x+b,將點(0,3)代入得:b=3,故答案為:?2,3.15、2【解題分析】
增根是化為整式方程后產(chǎn)生的不適合分式方程的根,確定增根的可能值,讓最簡公分母x-2=0即可.【題目詳解】∵關于x的方程=-3有增根,∴最簡公分母x-2=0,∴x=2.故答案為:2【題目點撥】本題考查分式方程的增根,確定增根的可能值,只需讓最簡公分母為0即可.分母是多項式時,應先因式分解.16、n2+2n【解題分析】試題分析:第1個圖形是2×3﹣3,第2個圖形是3×4﹣4,第3個圖形是4×5﹣5,按照這樣的規(guī)律擺下去,則第n個圖形需要黑色棋子的個數(shù)是(n+1)(n+2)﹣(n+2)=n2+2n.解:第n個圖形需要黑色棋子的個數(shù)是n2+2n.故答案為:n2+2n.17、>【解題分析】
根據(jù)方差的意義進行判斷.【題目詳解】因為甲組數(shù)有波動,而乙組的數(shù)據(jù)都相等,沒有波動,所以s甲1>s乙1.故答案為:>.【題目點撥】本題考查了方差:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗瑒t它與其平均值的離散程度越小,穩(wěn)定性越好.18、30%.【解題分析】
因為圓周角是360°,種植蘋果樹面積的扇形圓心角是108°,說明種植蘋果樹面積占總面積的108°÷360°=30%.據(jù)此解答即可.【題目詳解】由題意得:種植蘋果樹面積占總面積的:108°÷360°=30%.故答案為:30%.【題目點撥】本題考查扇形統(tǒng)計圖及相關計算.在扇形統(tǒng)計圖中,每部分占總部分的分率等于該部分所對應的扇形圓心角的度數(shù)與360°的比值.三、解答題(共78分)19、(1)見解析;(2)∠C=44°.【解題分析】
(1)由平行四邊形的性質(zhì)及角平分線的性質(zhì)可得AB=AE,CF=CD,進而可得四邊形EBFD是平行四邊形,即可得出結(jié)論;(2)根據(jù)平行線的性質(zhì)和角平分線的定義即可得到結(jié)論.【題目詳解】(1)證明:在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠CBE,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,即AB=AE,同理CF=CD,又AB=CD,∴CF=AE,∴BF=DE,∴四邊形EBFD是平行四邊形;(2)解:∵∠AEB=68°,AD∥BC,∴∠EBF=∠AEB=68°,∵BE平分∠ABC,∴∠ABC=2∠EBF=136°,∴∠C=180°-∠ABC=44°.故答案為:(1)見解析;(2)∠C=44°.【題目點撥】本題考查平行四邊形的性質(zhì)及角平分線的性質(zhì)問題,要熟練掌握,并能夠求解一些簡單的計算、證明問題.20、;85;1.(2)A校成績好些.校的方差,B校的方差.A校代表隊選手成績較為穩(wěn)定.【解題分析】
(1)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的意見,并結(jié)合圖表即可得出答案(2)根據(jù)平均數(shù)和中位數(shù)的意見,進行對比即可得出結(jié)論(3)根據(jù)方差的公式,代入數(shù)進行運算即可得出結(jié)論【題目詳解】解:;85;1.A校平均數(shù)=分A校的成績:75.1.85.85.100,眾數(shù)為85分B校的成績:70.75.1.100.100,中位數(shù)為1分校成績好些.因為兩個隊的平均數(shù)都相同,A校的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的A校成績好些.校的方差,B校的方差.,因此,A校代表隊選手成績較為穩(wěn)定.【題目點撥】本題主要考查了平均數(shù)、眾數(shù)、中位數(shù)、方差的意義,要注意找中位數(shù)要把數(shù)據(jù)從小到大進行排序,位于最中間的數(shù)或者兩個數(shù)的平均數(shù)為中位數(shù),以及注意眾數(shù)可能不止一個是解題的關鍵21、(1)見解析;(2)見解析,C2(﹣3,﹣4)【解題分析】
(1)根據(jù)可以得到平移方式,進而分別作出A,B,C的對應點A1,B1,C1即可.(2)分別作出點A1,B1,C1的對應點A2,B2,C2即可.【題目詳解】解:(1)如圖,△A1B1C1即為所求.(2)△A2B2C2即為所求.C2(﹣3,﹣4).【題目點撥】本題主要考查圖形的平移及旋轉(zhuǎn),準確的找到平移或旋轉(zhuǎn)后的對應點是解題的關鍵.22、四邊形是菱形,見解析.【解題分析】
根據(jù)菱形的判定方法即可求解.【題目詳解】解:四邊形是菱形,證明:過點分別作于點,于點,∴,∵兩張紙條等寬∴,,且,∴四邊形是平行四邊形,∴,∴,∴.∴四邊形是菱形.【題目點撥】此題主要考查菱形的判定,解題的關鍵是熟知菱形的判定定理.23、(1)﹣;(2)1.【解題分析】
(1)先把二次根式化為最簡二次根式,然后合并即可;(2)利用二次根式的性質(zhì)和平方差公式計算.【題目詳解】解:(1)原式=1﹣9+=﹣;(2)原式=7+9﹣12=1.【題目點撥】本題考查了二次根式的運算,正確掌握二次根式的性質(zhì)是解題的關鍵.24、(1)﹣40x+600;(2)銷售單價應定為10元.【解題分析】
(1)由表得出銷售單價每增加1元時,其銷售量減少40件,據(jù)此知其銷售量為560-40(x+3-4)=-40x+600;
(2)根據(jù)“毛利潤=總售價-總進價-固定成本”列出方程,解之求得x的值,再根據(jù)盡可能多的提升日銷售量確定銷售單價.【題目詳解】解:(1)由表格可知,銷售單價每增加1元時,其銷售量減少40件,根據(jù)題意知,其銷售量為560﹣40(x+3﹣4)=﹣40x+600;(2)根據(jù)題意,得:(﹣40x+600)x﹣400=1840,整理,得:x2﹣15x+56=0,解得:x1=7,x2=8,因為要盡可能多的提升日銷售量,所以x=7,此時銷售單價為10元,答:銷售單價應定為10元.【題目點撥】本題考查的是一元二次方程運用,熟練掌握一元二次方程是解題的關鍵.25、(1)證明見解析;(2)1s;(2)8s.【解題分析】分析:(1)由∠DFC=90°,∠C=30°,證出DF=2t=AE;(2)當四邊形BEDF是矩形時,△DEF為直角三角形且∠EDF=90°,求出t的值即可;(3)先證明四邊形AEFD為平行四邊形.得出AB=3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司股權(quán)質(zhì)押合同樣本
- 前期洽談合同標準文本
- 醫(yī)院編外人員勞動合同標準文本
- 業(yè)務用房合同樣本
- 國際合同范文
- 公共資源交易中心合同標準文本
- 物業(yè)服務與管理項目造價咨詢合同
- 醫(yī)院物資捐贈合同范本
- 人保貸款合同標準文本
- 勞動合同標準文本說明
- 2025年江蘇省徐州市銅山區(qū)中考一模道德與法治試題(原卷版+解析版)
- 制造業(yè)自檢自控流程優(yōu)化計劃
- 《人工智能的進展》課件
- 風濕免疫病患者結(jié)核病診治及預防實踐指南(2025版)解讀課件
- 大建安-大連市建筑工程安全檔案編制指南
- 上海2024-2025學年五年級數(shù)學第二學期期末聯(lián)考模擬試題含答案
- GB/T 45421-2025城市公共設施非物流用智能儲物柜服務規(guī)范
- 北京市豐臺區(qū)2025屆高三一模試卷語文試題(含答案)
- 安徽省合肥市高三下學期第二次教學質(zhì)量檢測數(shù)學試卷(含答案)
- 青島 地塊西海岸新區(qū)項目投標設計方案
- 2025年河南工業(yè)貿(mào)易職業(yè)學院單招職業(yè)傾向性測試題庫往年題考
評論
0/150
提交評論