




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濱州沾化區六校聯考數學九年級第一學期期末學業質量監測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如下圖,以某點為位似中心,將△AOB進行位似變換得到△CDE,記△AOB與△CDE對應邊的比為k,則位似中心的坐標和k的值分別為()A. B. C. D.2.方程組的解的個數為()A.1 B.2 C.3 D.43.關于反比例函數y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上4.若關于x的一元二次方程kx2+2x–1=0有實數根,則實數k的取值范圍是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠05.已知,,且的面積為,周長是的周長的,,則邊上的高等于()A. B. C. D.6.如圖,這個幾何體的左視圖是()A. B. C. D.7.在1、2、3三個數中任取兩個,組成一個兩位數,則組成的兩位數是奇數的概率為()A. B. C. D.8.如圖,和都是等腰直角三角形,,,的頂點在的斜邊上,、交于,若,,則的長為()A. B. C. D.9.在Rt△ABC中,∠C=90°,AC=5,BC=12,則cosB的值為()A. B. C. D.10.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.11.如圖,現有兩個相同的轉盤,其中一個分為紅、黃兩個相等的區域,另一個分為紅、黃、藍三個相等的區域,隨即轉動兩個轉盤,轉盤停止后指針指向相同顏色的概率為()A. B. C. D.12.如圖是某個幾何體的三視圖,則該幾何體是(
)A.長方體 B.圓錐 C.圓柱 D.三棱柱二、填空題(每題4分,共24分)13.在平面直角坐標系中,正方形ABCD的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形,延長交軸于點,作正方形,…按這樣的規律進行下去,第個正方形的面積為_____________.14.底角相等的兩個等腰三角形_________相似.(填“一定”或“不一定”)15.如圖,若一個半徑為1的圓形紙片在邊長為6的等邊三角形內任意運動,則在該等邊三角形內,這個圓形紙片能接觸到的最大面積為_____.16.如圖,四邊形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若AP⊥DP,則BP的長為_____.17.如圖,在中,,,點是邊的中點,點是邊上一個動點,當__________時,相似.18.已知關于的一元二次方程有兩個相等的實數根,則的值是__________.三、解答題(共78分)19.(8分)如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.(1)求證:CD是⊙O的切線;(2)若⊙O的直徑為4,AD=3,試求∠BAC的度數.20.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側,其他條件不變;①請直接寫出CF,BC,CD三條線段之間的關系;②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.21.(8分)已知:△ABC中,點D為邊BC上一點,點E在邊AC上,且∠ADE=∠B(1)如圖1,若AB=AC,求證:;(2)如圖2,若AD=AE,求證:;(3)在(2)的條件下,若∠DAC=90°,且CE=4,tan∠BAD=,則AB=____________.22.(10分)如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E,連接AC、OC、BC(1)求證:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面積.(結果保留π)23.(10分)如圖是數值轉換機的示意圖,小明按照其對應關系畫出了y與x的函數圖象(如圖):(1)分別寫出當0≤x≤4與x>4時,y與x的函數關系式:(2)求出所輸出的y的值中最小一個數值;(3)寫出當x滿足什么范圍時,輸出的y的值滿足3≤y≤1.24.(10分)如圖,已知拋物線y=﹣x2+bx+c經過A(3,0),B(0,3)兩點.(1)求此拋物線的解析式和直線AB的解析式;(2)如圖①,動點E從O點出發,沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發,沿著AB方向以個單位/秒的速度向終點B勻速運動,當E,F中任意一點到達終點時另一點也隨之停止運動,連接EF,設運動時間為t秒,當t為何值時,△AEF為直角三角形?(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構成無數個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標;如果不存在,請簡要說明理由.25.(12分)如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD;(2)求證:CE∥AD;(3)若AD=5,AB=8,求的值.26.已知拋物線y=kx2+(1﹣2k)x+1﹣3k與x軸有兩個不同的交點A、B.(1)求k的取值范圍;(2)證明該拋物線一定經過非坐標軸上的一點M,并求出點M的坐標;(3)當<k≤8時,由(2)求出的點M和點A,B構成的△ABM的面積是否有最值?若有,求出該最值及相對應的k值.
參考答案一、選擇題(每題4分,共48分)1、C【解析】兩對對應點的連線的交點即為位似中心,連接OD、AC,交點為(2,2,)即位似中心為(2,2,);k=OA:CD=6:3=2,故選C.2、A【分析】分類討論x與y的正負,利用絕對值的代數意義化簡,求出方程組的解,即可做出判斷.【詳解】解:根據x、y的正負分4種情況討論:①當x>0,y>0時,方程組變形得:,無解;②當x>0,y<0時,方程組變形得:,解得x=3,y=2>0,則方程組無解;③當x<0,y>0時,方程組變形得:,此時方程組的解為;④當x<0,y<0時,方程組變形得:,無解,綜上所述,方程組的解個數是1.故選:A.【點睛】本題考查了解二元一次方程組,利用了分類討論的思想,熟練掌握運算法則是解本題的關鍵.3、C【分析】根據反比例函數y=的圖象上點的坐標特征,以及該函數的圖象的性質進行分析、解答.【詳解】A.反比例函數的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內,y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數的性質.注意:反比例函數的增減性只指在同一象限內.4、C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有兩個實數根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故選C.點睛:此題考查了一元二次方程根的判別式,根的判別式的值大于1,方程有兩個不相等的實數根;根的判別式的值等于1,方程有兩個相等的實數根;根的判別式的值小于1,方程沒有實數根.5、B【分析】根據相似三角形的周長比等于相似比可得兩個三角形的相似比,根據相似三角形的面積比等于相似比的平方可求出△ABC的面積,進而可求出AB邊上的高.【詳解】∵,周長是的周長的,∴與的相似比為,∴,∵S△A′B′C′=,∴S△ABC=24,∵AB=8,∴AB邊上的高==6,故選:B.【點睛】本題考查相似三角形的性質,相似三角形的周長比等于相似比;相似三角形的面積比等于相似比的平方;熟練掌握相關性質是解題關鍵.6、B【解析】根據三視圖概念即可解題.【詳解】解:因為物體的左側高,所以會將右側圖形完全遮擋,看不見的直線要用虛線代替,故選B.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.7、C【分析】列舉出所有情況,看末位是1和3的情況占所有情況的多少即可.【詳解】依題意畫樹狀圖:∴共有6種情況,是奇數的有4種情況,所以組成的兩位數是偶數的概率=,故選:C.【點睛】本題考查了樹狀圖法求概率以及概率公式;如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=,注意本題是不放回實驗.8、B【分析】連接BD,自F點分別作,交AD、BD于G、H點,通過證明,可得,根據勾股定理求出AB的長度,再根據角平分線的性質可得,根據三角形面積公式可得,代入中即可求出BF的值.【詳解】如圖,連接BD,自F點分別作,交AD、BD于G、H點∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分線∵△ADF底邊AF上的高h與△BDF底邊BF上的高h相同故答案為:B.【點睛】本題考查了三角形的綜合問題,掌握等腰直角三角形的性質、全等三角形的性質以及判定定理、勾股定理、角平分線的性質、三角形面積公式是解題的關鍵.9、B【分析】根據勾股定理求出AB,根據余弦的定義計算即可.【詳解】由勾股定理得,,則,故選:B.【點睛】本題考查的是銳角三角函數的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關鍵.10、C【解析】連接OD,根據勾股定理求出CD,根據直角三角形的性質求出∠AOD,根據扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.11、A【解析】先畫樹狀圖展示所有6種等可能的結果數,找出停止后指針指向相同顏色的結果數,然后根據概率公式計算.【詳解】畫樹狀圖如下:由樹狀圖知,共有6種等可能結果,其中轉盤停止后指針指向相同顏色的有2種結果,所以轉盤停止后指針指向相同顏色的概率為=,故選:A.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.12、B【分析】根據幾何體的三視圖,可判斷出幾何體.【詳解】解:∵主視圖和左視圖是等腰三角形∴此幾何體是錐體∵俯視圖是圓形∴這個幾何體是圓錐故選B.【點睛】此題主要考查了幾何體的三視圖,關鍵是利用主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀.二、填空題(每題4分,共24分)13、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,證△DOA∽△ABA1,得出,求出AB,BA1,求出邊長A1C=,求出面積即可;求出第2個正方形的邊長是,求出面積,再求出第3個正方形的面積;依此類推得出第n個正方形的邊長,求出面積即可.【詳解】∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=∴BA1=∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,面積是;同理第3個正方形的邊長是面積是;第4個正方形的邊長是,面積是…,
第n個正方形的邊長是,面積是故答案為:【點睛】本題考查了正方形的性質,相似三角形的性質和判定,勾股定理的應用,解此題的關鍵是根據計算的結果得出規律,題目比較好,但是一道比較容易出錯的題目14、一定【分析】根據等腰三角形的性質得到∠B=∠C,∠E=∠F,根據相似三角形的判定定理證明.【詳解】如圖:∵AB=AC,DE=EF,∴∠B=∠C,∠E=∠F,∵∠B=∠E,∴∠B=∠C=∠E=∠F,∴△ABC∽△DEF,故答案為一定.【點睛】本題考查的是相似三角形的判定、等腰三角形的性質,掌握兩組角對應相等的兩個三角形相似是解題的關鍵.15、6+π.【分析】根據直角三角形的面積和扇形面積公式先求出圓形紙片不能接觸到的面積,再用等邊三角形的面積去減即可得能接觸到的最大面積.【詳解】解:如圖,當圓形紙片運動到與∠A的兩邊相切的位置時,過圓形紙片的圓心O作兩邊的垂線,垂足分別為D,E,連接AO,則Rt△ADO中,∠OAD=30°,OD=1,AD=,∴S△ADO=OD?AD=,∴S四邊形ADOE=2S△ADO=,∵∠DOE=120°,∴S扇形DOE=,∴紙片不能接觸到的部分面積為:3(﹣)=3﹣π∵S△ABC=×6×3=9∴紙片能接觸到的最大面積為:9﹣3+π=6+π.故答案為6+π.【點睛】此題主要考查圓的綜合運用,解題的關鍵是熟知等邊三角形的性質、扇形面積公式.16、1或2【分析】設BP=x,則PC=3-x,根據平行線的性質可得∠B=90°,根據同角的余角相等可得∠CDP=∠APB,即可證明△CDP∽△BPA,根據相似三角形的性質列方程求出x的值即可得答案.【詳解】設BP=x,則PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的長為1或2,故答案為:1或2【點睛】此題考查的是相似三角形的判定及性質,掌握相似三角形的對應邊成比例列方程是解題的關鍵.17、【分析】直接利用,找到對應邊的關系,即可得出答案.【詳解】解:當時,
則,
∵,點是邊的中點,
∴∵,∴則綜上所述:當BQ=時,.
故答案為:.【點睛】此題主要考查了相似三角形的性質,得到對應邊成比例是解答此題的關鍵.18、【解析】根據方程有兩個相等的實數根,可得b2-4ac=0,方程化為一般形式后代入求解即可.【詳解】原方程化為一般形式為:mx2+(2m+1)x=0,∵方程有兩個相等的實數根∴(2m+1)2-4m×0=0【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的根的判別式,本題屬于基礎題型.三、解答題(共78分)19、(1)證明見解析;(2)30°.【解析】(1)連接OC,證先利用角平分線的定義和等腰三角形的性質證明∠OCA=∠DAC,從而OC∥AD,由平行線的性質可得OC⊥CD,從而得出CD是⊙O切線;(2)連接BC,證明△ACB∽△ADC,求出AC的長度,再求出∠BAC的余弦,得出∠BAC的度數.【詳解】解:(1)連結OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切線.(2)連結BC.∵AB是⊙O的直徑,∴∠ACB=90°,∴∠ACB=∠ADC=90°.又∠BAC=∠DAC,∴△ACB∽△ADC.∴,,,∴AC=.在Rt△ACB中,cos∠BAC=,∴∠BAC=30°.【點睛】本題主要考查了等腰三角形的性質,平行線的判定與性質,圓的切線的判定及銳角三角函數的知識.連接半徑是證明切線的一種常用輔助線的做法,求角的度數可以借助于三角函數.20、(1)證明見解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據此即可證得.(1)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.②證明△BAD≌△CAF,△FCD是直角三角形,然后根據正方形的性質即可求得DF的長,則OC即可求得.【詳解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的邊長為且對角線AE、DF相交于點O,∴DF=AD=4,O為DF中點.∴OC=DF=1.21、【解析】分析:(1)∠ADE=∠B,可得根據等邊對等角得到△BAD∽△CDE,根據相似三角形的性質即可證明.(2)在線段AB上截取DB=DF,證明△AFD∽△DEC,根據相似三角形的性質即可證明.(3)過點E作EF⊥BC于F,根據tan∠BAD=tan∠EDF=,設EF=x,DF=2x,則DE=,證明△EDC∽△GEC,求得,根據CE2=CD·CG,求出CD=,根據△BAD∽△GDE,即可求出的長度.詳解:(1)∠ADE=∠B,可得∵△BAD∽△CDE,∴;(2)在線段AB上截取DB=DF∴∠B=∠DFB=∠ADE∵AD=AE∴∠ADE=∠AED∴∠AED=∠DFB,同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE∴∠BAD=∠CDE∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED∴∠AFD=∠DEC,∴△AFD∽△DEC,∴(3)過點E作EF⊥BC于F∵∠ADE=∠B=45°∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°∴∠BAD=∠EBC(三等角模型中,這個始終存在)∵tan∠BAD=tan∠EDF=∴設EF=x,DF=2x,則DE=,在DC上取一點G,使∠EGD=45°,∴△BAD∽△GDE,∵AD=AE∴∠AED=∠ADE=45°,∵∠AED=∠EDC+∠C=45°,∠C+∠CEG=45°,∴∠EDC=∠GEC,∴△EDC∽△GEC,∴∴,又CE2=CD·CG,∴42=CD·,CD=,∴,解得∵△BAD∽△GDE∴,∴.點睛:屬于相似三角形的綜合題,考查相似三角形的判定于性質,掌握相似三角形的判定方法是解題的關鍵.22、(1)見解析;(2)169π(cm2).【分析】(1)根據垂徑定理,即可得=,根據同弧所對的圓周角相等,證出∠BAC=∠BCD,再根據等邊對等角,即可得到∠BAC=∠ACO,從而證出∠ACO=∠BCD;(2)根據垂徑定理和勾股定理列出方程,求出圓的半徑,即可求出圓的面積.【詳解】解:(1)∵AB為⊙O的直徑,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB為⊙O的直徑,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,設CO為r,則OE=r﹣8,根據勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【點睛】此題考查的是垂徑定理、等腰三角形的性質、圓周角定理推論和求圓的面積,掌握垂徑定理和勾股定理的結合是解決此題的關鍵.23、(1)當時,y=x+3;當時y=(x-1)2+2(2)最小值2(3)0≤x≤5或7≤x≤2【解析】(1)當0≤x≤4時,函數關系式為y=x+3;當x>4時,函數關系式為y=(x﹣1)2+2;(2)根據一次函數與二次函數的性質,分別求出自變量在其取值范圍內的最小值,然后比較即可;(3)由題意,可得不等式和,解答出x的值即可.【詳解】解:(1)由圖可知,當0≤x≤4時,y=x+3;當x>4時,y=(x﹣1)2+2;(2)當0≤x≤4時,y=x+3,此時y隨x的增大而增大,∴當x=0時,y=x+3有最小值,為y=3;當x>4時,y=(x﹣1)2+2,y在頂點處取最小值,即當x=1時,y=(x﹣1)2+2的最小值為y=2;∴所輸出的y的值中最小一個數值為2;(3)由題意得,當0≤x≤4時,解得,0≤x≤4;當x>4時,,解得,4≤x≤5或7≤x≤2;綜上,x的取值范圍是:0≤x≤5或7≤x≤2.24、(1)拋物線的解析式為y=﹣x2+2x+3,直線AB的解析式為y=﹣x+3;(2)t=或;(3)存在面積最大,最大值是,此時點P(,).【分析】(1)將A(3,0),B(0,3)兩點代入y=﹣x2+bx+c,求出b及c即可得到拋物線的解析式,設直線AB的解析式為y=kx+n,將A、B兩點坐標代入即可求出解析式;(2)由題意得OE=t,AF=t,AE=OA﹣OE=3﹣t,分兩種情況:①若∠AEF=∠AOB=90°時,證明△AOB∽△AEF得到=,求出t值;②若∠AFE∠AOB=90°時,證明△AOB∽△AFE,得到=求出t的值;(3)如圖,存在,連接OP,設點P的坐標為(x,﹣x2+2x+3),根據,得到,由此得到當x=時△ABP的面積有最大值,最大值是,并求出點P的坐標.【詳解】(1)∵拋物線y=﹣x2+bx+c經過A(3,0),B(0,3)兩點,∴,解得,∴拋物線的解析式為y=﹣x2+2x+3,設直線AB的解析式為y=kx+n,∴,解得,∴直線AB的解析式為y=﹣x+3;(2)由題意得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF為直角三角形,∴①若∠AEF=∠AOB=90°時,∵∠BAO=∠EAF,∴△AOB∽△AEF∴=,∴,∴t=.②若∠AFE∠AOB=90°時,∵∠BAO=∠EAF,∴△AOB∽△AFE,∴=,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人美版四年級下冊14.艷麗的大公雞教案
- 管理評審會議記錄
- 2024四川發展數字金沙科技有限公司招聘2人筆試參考題庫附帶答案詳解
- 六年級數學下冊 二 圓柱與圓錐(圓柱的體積)教學設計 西師大版
- 2024啟明信息校園招聘丨令人心動筆試參考題庫附帶答案詳解
- 七年級英語下冊 Module 6 Around town Unit 2 The London Eye is on your right第4課時教學設計 (新版)外研版
- 初中英語人教新目標 (Go for it) 版八年級下冊Section B教案及反思
- 人教版道德與法治七年級上冊5.1《讓友誼之樹常青》教學設計
- 車間級崗前教育培訓
- 人教版信息技術八年級下冊教學設計:第七課 度量與計算(二、簡單計算)
- 機械設計說明書-多功能自動跑步機機械部分設計
- 英語小故事(中英文對照)課件
- 《古羅馬人的數字》課件
- 2022-2023學年上海市徐匯區世界外國語中學八年級(下)期中物理試卷
- 注塑工藝培訓-課件
- 釣魚中各種氨基酸誘食劑說明書及使用方法
- 會計事務所內控審計所需資料清單
- 【電氣專業】15D501建筑物防雷設施安裝
- 2023年考研考博-考博英語-西安電子科技大學考試歷年真題摘選含答案解析
- Excel水力計算展示-棱柱體渠道水面線計算演示
- 林則徐課件完整版
評論
0/150
提交評論