




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
杭州外國語學校2024屆數學高三第一學期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.2.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內切圓半徑為()A. B. C. D.3.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有4.若表示不超過的最大整數(如,,),已知,,,則()A.2 B.5 C.7 D.85.已知函數(,)的一個零點是,函數圖象的一條對稱軸是直線,則當取得最小值時,函數的單調遞增區間是()A.() B.()C.() D.()6.若,則,,,的大小關系為()A. B.C. D.7.已知點,是函數的函數圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數 B.,a為任意非零實數C.a、b均為任意實數 D.不存在滿足條件的實數a,b8.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.9.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.10.設拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.11.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.12.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設變量,滿足約束條件,則目標函數的最小值為______.14.已知雙曲線C:()的左、右焦點為,,為雙曲線C上一點,且,若線段與雙曲線C交于另一點A,則的面積為______.15.(5分)已知,且,則的值是____________.16.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現有一善織布的女子,從第2天開始,每天比前一天多織相同數量的布,第一天織了5尺布,現在一個月(按30天計算)共織布390尺.”則每天增加的數量為____尺,設該女子一個月中第n天所織布的尺數為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.18.(12分)等差數列中,.(1)求的通項公式;(2)設,記為數列前項的和,若,求.19.(12分)已知函數(是自然對數的底數,).(1)求函數的圖象在處的切線方程;(2)若函數在區間上單調遞增,求實數的取值范圍;(3)若函數在區間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數取極值時對應的自變量的值).20.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.22.(10分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數.2、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內心的概念,考查了轉化的思想,屬于中檔題.3、C【解析】
根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.4、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數列,則.故選:B.【點睛】本題考查周期數列的判斷和取整函數的應用.5、B【解析】
根據函數的一個零點是,得出,再根據是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調增區間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調遞增區間是().故選:B【點睛】此題考查三角函數的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數值為零,屬于較易題目.6、D【解析】因為,所以,因為,,所以,.綜上;故選D.7、A【解析】
求得的導函數,結合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數.【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數.故選:A【點睛】本題考查導數的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.8、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.9、B【解析】
根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.10、B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數,可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關鍵是發現原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.11、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.12、C【解析】
根據,兩邊平方,化簡得,再利用數量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數量積運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-8【解析】
通過約束條件,畫出可行域,將問題轉化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當過時,在軸截距最大本題正確結果:【點睛】本題考查線性規劃中的型最值的求解問題,關鍵在于將所求最值轉化為在軸截距的問題.14、【解析】
由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯立求得點A坐標,借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯立消去x整理得,所以,,所以點A坐標為,所以.【點睛】本題主要考查直線與雙曲線的位置關系,考查雙曲線方程的求解,考查求三角形面積,考查學生的計算能力,難度較難.15、【解析】
由于,且,則,得,則.16、52【解析】
設從第2天開始,每天比前一天多織尺布,由等差數列前項和公式求出,由此利用等差數列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數量為,
,故答案為,52.【點睛】本題主要考查等差數列的通項公式、等差數列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法求線面角,屬于中檔題.18、(1)(2)【解析】
(1)由基本量法求出公差后可得通項公式;(2)由等差數列前項和公式求得,可求得.【詳解】解:(1)設的公差為,由題設得因為,所以解得,故.(2)由(1)得.所以數列是以2為首項,2為公比的等比數列,所以,由得,解得.【點睛】本題考查求等差數列的通項公式和等比數列的前項和公式,解題方法是基本量法.19、(1);(2);(3).【解析】
(1)利用導數的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調遞減,在上單調遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.(2),.因為函數在區間上單調遞增,所以,且恒成立,即,所以,即,又,故,所以實數的取值范圍是.(3).因為函數在區間上有兩個極值點,所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調遞減,在上單調遞增,所以,解得且.又由,所以,且當和時,單調遞增,當時,單調遞減,是極值點,此時令,則,所以在上單調遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當時,;當時,.所以,所以在上單調遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點睛】本題考查導數的綜合應用,涉及到導數的幾何意義,利用導數研究函數的單調性、極值點,不等式恒成立等知識,是一道難題.20、(1);(2)4【解析】
(1)根據已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.21、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畜牧良種繁殖資源保護與持續利用考核試卷
- 種子批發市場供應鏈透明度與追溯技術考核試卷
- 紙質航空航天材料研究進展與應用考核試卷
- 珠寶首飾行業科技創新與產業發展考核試卷
- 紡織品批發市場動態監測考核試卷
- 電磁輻射安全檢測考核試卷
- 毛皮制品加工企業生產過程質量控制考核試卷
- 篷布產業標準化建設考核試卷
- 上饒衛生健康職業學院《古文字學與古代漢語》2023-2024學年第二學期期末試卷
- 四川省成都西蜀實驗2025屆初三數學試題5月8日第6周測試題含解析
- 三角堰流量計算公式
- 砌體工程事故及事故分析
- 《改善患者就醫體驗》課件
- 《產科超聲之科普講》課件
- 用電安全及防雷防靜電知識考核試卷
- 《成人心肺復蘇術》課件
- 服務機器人的智能導航與定位考核試卷
- 化驗室培訓課件
- 3.2.1.1函數的單調性課件-高一上學期數學人教A版(2019)必修第一冊
- 噬血細胞綜合征并發患者的個案護理課件
- 當代中國外交 第三章 70年代的中國外交
評論
0/150
提交評論