




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濱州市五校聯合市級名校中考數學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.|﹣3|的值是()A.3 B. C.﹣3 D.﹣2.已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數根,則常數c的值為(
)A.﹣1 B.0 C.1 D.33.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°4.如圖,是的直徑,是的弦,連接,,,則與的數量關系為()A. B.C. D.5.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.6.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°7.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.28.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣69.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數、中位數分別是()年齡(歲)1213141516人數12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲10.對于實數x,我們規定[x]表示不大于x的最大整數,如[4]=4,[]=1,[﹣2.5]=﹣3.現對82進行如下操作:82[]=9[]=3[]=1,這樣對82只需進行3次操作后變為1,類似地,對121只需進行多少次操作后變為1()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,等邊三角形的頂點A(1,1)、B(3,1),規定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續經過2018次變換后,等邊△ABC的頂點C的坐標為_____.12.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.13.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.14.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.15.已知點P在一次函數y=kx+b(k,b為常數,且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數y=圖象交于C,D兩點(點C在第二象限內),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.16.如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.17.計算(2a)3的結果等于__.三、解答題(共7小題,滿分69分)18.(10分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.19.(5分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.20.(8分)嘉淇在做家庭作業時,不小心將墨汁弄倒,恰好覆蓋了題目的一部分:計算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,經詢問,王老師告訴題目的正確答案是1.(1)求被覆蓋的這個數是多少?(2)若這個數恰好等于2tan(α﹣15)°,其中α為三角形一內角,求α的值.21.(10分)某市對城區部分路段的人行道地磚、綠化帶、排水管等公用設施進行全面更新改造,根據市政建設的需要,需在35天內完成工程.現有甲、乙兩個工程隊有意承包這項工程,經調查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.甲、乙兩個工程隊單獨完成此項工程各需多少天?若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設計一種方案,既能按時完工,又能使工程費用最少.22.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.23.(12分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.24.(14分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.2、D【解題分析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數根,所以?=b2﹣4ac=0,可得關于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.3、C【解題分析】
如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【題目詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【題目點撥】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.4、C【解題分析】
首先根據圓周角定理可知∠B=∠C,再根據直徑所得的圓周角是直角可得∠ADB=90°,然后根據三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【題目詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【題目點撥】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.5、B【解題分析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.6、C【解題分析】
這個扇形的圓心角的度數為n°,根據弧長公式得到20π=,然后解方程即可.【題目詳解】解:設這個扇形的圓心角的度數為n°,根據題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【題目點撥】本題考查了弧長公式:L=(n為扇形的圓心角的度數,R為扇形所在圓的半徑).7、D【解題分析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【題目詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【題目點撥】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.8、D【解題分析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【題目詳解】解:0.0000025第一個有效數字前有6個0(含小數點前的1個0),從而.故選D.9、D【解題分析】
眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【題目詳解】解:數據1出現了5次,最多,故為眾數為1;按大小排列第6和第7個數均是1,所以中位數是1.故選D.【題目點撥】本題主要考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求.如果是偶數個則找中間兩位數的平均數.10、C【解題分析】分析:[x]表示不大于x的最大整數,依據題目中提供的操作進行計算即可.詳解:121∴對121只需進行3次操作后變為1.故選C.點睛:本題是一道關于無理數的題目,需要結合定義的新運算和無理數的估算進行求解.二、填空題(共7小題,每小題3分,滿分21分)11、(﹣2016,+1)【解題分析】
據軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據平移的距離求出點A變換后的橫坐標,最后寫出即可.【題目詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【題目點撥】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續2018次這樣的變換得到三角形在x軸上方是解題的關鍵.12、5.【解題分析】
試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質;2.三角形的面積;3.勾股定理.13、1【解題分析】
底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【題目詳解】試題解析:①當腰是4cm,底邊是9cm時:不滿足三角形的三邊關系,因此舍去.②當底邊是4cm,腰長是9cm時,能構成三角形,則其周長=4+9+9=1cm.故填1.【題目點撥】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.14、【解題分析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.15、(1)-2;(2)【解題分析】
(1)設點P的坐標為(m,n),則點Q的坐標為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數y=?2x+b中x=0,則y=b,∴BO=b;令一次函數y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.16、同位角相等,兩直線平行.【解題分析】試題解析:利用三角板中兩個60°相等,可判定平行考點:平行線的判定17、8【解題分析】試題分析:根據冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).();(3).【解題分析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數關系式是解答本題的關鍵.19、(1)證明略;(2)BC=,BF=.【解題分析】試題分析:(1)連結AE.有AB是⊙O的直徑可得∠AEB=90°再有BF是⊙O的切線可得BF⊥AB,利用同角的余角相等即可證明;(2)在Rt△ABE中有三角函數可以求出BE,又有等腰三角形的三線合一可得BC=2BE,過點C作CG⊥AB于點G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后證出△AGC∽△ABF有相似的性質求出BF即可.試題解析:(1)證明:連結AE.∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切線,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:過點C作CG⊥AB于點G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考點:切線的性質,相似的性質,勾股定理.20、(1)2;(2)α=75°.【解題分析】
(1)直接利用絕對值的性質以及負指數冪的性質以及零指數冪的性質分別化簡得出答案;(2)直接利用特殊角的三角函數值計算得出答案.【題目詳解】解:(1)原式=1+﹣1+﹣□+1=1,∴□=1+﹣1++1﹣1=2;(2)∵α為三角形一內角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=,∴α﹣15°=60°,∴α=75°.【題目點撥】此題主要考查了實數運算,正確化簡各數是解題關鍵.21、(1)甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天;(2)應該選擇甲工程隊承包該項工程.【解題分析】
(1)設甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需2x天.再根據“甲、乙兩隊合作完成工程需要10天”,列出方程解決問題;
(2)首先根據(1)中的結果,從而可知符合要求的施工方案有三種:方案一:由甲工程隊單獨完成;方案二:由乙工程隊單獨完成;方案三:由甲乙兩隊合作完成.針對每一種情況,分別計算出所需的工程費用.【題目詳解】(1)設甲工程隊單獨完成該工程需天,則乙工程隊單獨完成該工程需天.根據題意得:方程兩邊同乘以,得解得:經檢驗,是原方程的解.∴當時,.答:甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天.(2)因為甲乙兩工程隊均能在規定的35天內單獨完成,所以有如下三種方案:方案一:由甲工程隊單獨完成.所需費用為:(萬元);方案二:由乙工程隊單獨完成.所需費用為:(萬元);方案三:由甲乙兩隊合作完成.所需費用為:(萬元).∵∴應該選擇甲工程隊承包該項工程.【題目點撥】本題考查分式方程在工程問題中的應用.分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.22、(1);(2)(,0);(3)1,M(2,﹣3).【解題分析】試題分析:方法一:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)首先根據拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設一條平行于BC的直線,那么當該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數,從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設直線l∥BC,則該直線的解析式可表示為:y=x+b,當直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025租戶倉庫租賃合同范本
- 各種職業的職業病體檢項目和體檢周期
- 腫瘤病人的飲食護理
- 呼吸系統嚴重疾患病人的麻醉
- 2025年服裝批發市場營業房租賃合同
- 2025餐飲管理公司管理餐飲合同
- 《社會科學探索與研究方法》課件
- 2025建筑工程施工分包臨時設施建設合同范本
- 《糕點成本分析》課件
- 年綜合利用6萬噸廢鋰電池渣鋰電解質項目可行性研究報告模板-立項拿地
- 2024年國家低壓電工證理論考試題庫(含答案)
- 英語-第一冊-第三版-Unit5
- 讀書分享平凡的世界
- Se7en《七宗罪(1995)》完整中英文對照劇本
- 2024年山東濟南中考語文作文分析-為了這份繁華
- 醫院案例剖析之武漢協和醫院:護理人文關懷規范化實踐管理體系的構建與應用
- 帕金森病藥物治療 課件
- 2024年醫院依法執業培訓課件
- 公司收款委托書模板
- 17 他們那時候多有趣啊 教學設計-2023-2024學年語文六年級下冊統編版
- 2024年CCAA注冊審核員《產品認證基礎》(真題卷)
評論
0/150
提交評論