The Compound Poisson process-復(fù)合泊松過程_第1頁
The Compound Poisson process-復(fù)合泊松過程_第2頁
The Compound Poisson process-復(fù)合泊松過程_第3頁
The Compound Poisson process-復(fù)合泊松過程_第4頁
The Compound Poisson process-復(fù)合泊松過程_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1TheCompoundPoissonprocessDefinitionofcompoundPoissonprocessNatureofthecompoundPoissonprocessApplicationofcompoundPoissonprocess2Definitions:

{N(t),t≥0}isaPoissonprocessofintensityλ,{Yk,k=1,2,...}isasequenceofindependentandidenticallydistributedrandomvariables,andwiththe{N(t),t≥0}independence,if

Definitions{X(t),t≥0}isacompoundPoissonprocess3N(t)isthetimeperiod(0,t]withinacertainnumberofcustomerstothestore,{N(t),t≥0}isaPoissonprocessifYkisthek-thcustomerinthestoreofmoneyspent,then{Yk,k=1,2,...}isasequenceofindependentandidenticallydistributedrandomvariables,andwiththe{N(t),t≥0}independence.

HutchisonX(t)forthestoresin(0,t]periodofturnover,theIsacompoundPoissonprocess.CompoundPoissonProcess4NatureofthecompoundPoissonproces{X(t),t≥0}isacompoundPoissonprocess,then(1){X(t),t≥0}areindependentgrowthprocess;(2)X(t)isthecharacteristicfunctiongY(u)isthecharacteristicfunctionoftherandomvariableY1,λisthearrivalrateofevents.(3)If<∞,thenE[X(t)]=λtE[Y1],D[X(t)]=λtE[YI2]5Proof:Let0≤t0<t1<...<tm,then{Yk,k=1,2,...}isanindependentandidenticallydistributedrandomvariables,soX(t)withindependentincrementsproperty.6(2)7⑶natureoftheconditionalexpectationE[X(t)]=E{E[X(t)|N(t)]}knowledgeandassumptions:Then:Similarly8CompoundPoissonprocessconsistsofarandomvariable{Yn}andconstitute,whenYn≡1,X(t)=N(t),X(t)istheusualPoissonprocess.WhenaskedtodefineacompoundPoissonprocess,analyzespecificissues,wemustfirstdetermineaPoissonprocesswithasequenceofrandomvariables,andthentoverifytheindependenceoftherandomvariablesequenceandthesequenceofrandomvariableswithaPoissonprocess.Onlyaftertheseconditionsaremet,theissuebeforeprocessingorcomputing.9Example:

LetimmigrantstosettleinaplaceofhouseholdsisaPoissonprocess,knowntoanaverageoftwotosettleweek.Lethouseholdpopulationisarandomvariable,andtheprobabilityofahouseholdisa4/6,3istheprobabilityof1/3,thereisaprobabilityof2/3,thereisaprobabilitythatahuman1/6.Andinformthepopulationofallhouseholdsareindependent.Seeking[0,t]weekstosettleinthenumberofimmigrantstothemathematicalexpectationandvariance.10Solution:LetYiisthei-thpopulationofhouseholds,{Yi}areindependent,thetotalnumberofimmigrants

X(t)=

IsacompoundPoissonprocess.Accordingtothemeaningofproblems,λ=2.

E[Y1]=4.1/6+3·1/3+2·1/3+1·1/6=5/2;

E[Y12]=42.1/6+32·1/3+22·1/3+12·1/6=43/6;

So,

E[X(t)]=λtE[Y1]=2t·5/2=5t;

D[X(t)]=λtE[Y12]=2t43/6=43t/3.11Example:

Considertheinsurancecompanywaspreparedtopaymoneytothetotalamountofinsurancereserves.

Assumingtheinsurancepolicyholderatthetime0<τ1<τ2<...<τn

Death;insuranceamountrequestedforthefamiliesofYn.

YnareindependentandaresubordinatetoU[1500-2000]evenlydistributed.

AssumingX(t)representsthenumberof[0~t]perioddeaths.

X(t)isahomogeneousPoissonprocessλ=3.Insurancecompaniesprepare

TheinsuranceamountZt=FindcompoundPoissonprocessE[Z(t)],D[Z(t)]12Solution:toknowthemeaningofthequestions,λ=3Seenbytheprobabilitytheory,mathematicalexpectationevenlydistributedSoBecauseBythe13So

14Example:

SetupanumberofairportpassengerarrivalPoissonprocess,thenumberofaircraftperhourarrivesforfive,passengertotalA,B,Carethreetypes,thenumberofpassengerstheycancarrywere180people,145people,80people.Andthesameprobabilityofthesethreeplanesappeared.Seekingtoreachtheairportwithinthreehoursthemaximumnumberofpassengersmathematicalexpectationofhowmany?Howmuchvariance?15Solution:LetthenumberofpassengeraircraftYirepresentsthefirstnnumberofpassengers,X(t)representativesarriveattheairport,then16λ=5,Sowithinthreehoursofpassengersmathematicalexpectationandvarianceasfollows:SummaryEquivalenttoacompoundPoissonprocesscorrespondingtothetimeinterval[0,t]auxiliaryrandomvariableYnsuperimposedtoaPoissonprocess{X(t),t≥0}togo.SocompoundPoissonprocesscanbecalledoverlayprocess.Thus,accordingtothecompoundPoissonprocesscanoftenfindsomesimilarstoreturnover,insurancecompanyreservesandthelike,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論