




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省實驗中學2024屆高二數學第一學期期末調研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線l:的傾斜角為()A. B.C. D.2.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.3.經過點,且被圓所截得的弦最短時的直線的方程為()A. B.C. D.4.已知直線l和拋物線交于A,B兩點,O為坐標原點,且,交AB于點D,點D的坐標為,則p的值為()A. B.1C. D.25.已知直線平分圓C:,則最小值為()A.3 B.C. D.6.下列事件:①連續兩次拋擲同一個骰子,兩次都出現2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數是()A.1 B.2C.3 D.47.已知直線,若圓C的圓心在軸上,且圓C與直線都相切,求圓C的半徑()A. B.C.或 D.8.命題p:存在一個實數﹐它的絕對值不是正數.則下列結論正確的是()A.:任意實數,它的絕對值是正數,為假命題B.:任意實數,它的絕對值不是正數,為假命題C.:存在一個實數,它的絕對值是正數,為真命題D.:存在一個實數,它的絕對值是負數,為真命題9.由倫敦著名建筑事務所SteynStudio設計的南非雙曲線大教堂驚艷世界,該建筑是數學與建筑完美結合造就的藝術品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.10.已知中,內角所對的邊分別,若,,,則()A. B.C. D.11.等比數列滿足,,則()A.11 B.C.9 D.12.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,并且、共線且方向相同,則______.14.已知點是拋物線上的兩點,,點是拋物線的焦點,若,則的值為__________15.已知正方體,點在底面內運動,且始終保持平面,設直線與底面所成的角為,則的最大值為______.16.已知直線與圓:交于、兩點,則的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前n項和為,且,(1)求數列的通項公式;(2)若,求k的值18.(12分)已知數列為各項均為正數的等比數列,若(1)求數列的通項公式;(2)求數列的前n項和19.(12分)已知函數,其中為常數,且(1)求證:時,;(2)已知a,b,p,q為正實數,滿足,比較與的大小關系.20.(12分)已知函數(1)當時,求函數的極值;(2)當時,若恒成立,求實數a的取值范圍21.(12分)已知是函數的一個極值點.(1)求實數的值;(2)求函數在區間上的最大值和最小值.22.(10分)在下列所給的三個條件中任選一個,補充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.2、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點:直線與圓相交的弦長問題3、C【解析】當是弦中點,她能時,弦長最短.由此可得直線斜率,得直線方程【詳解】根據題意,圓心為,當與直線垂直時,點被圓所截得的弦最短,此時,則直線的斜率,則直線的方程為,變形可得,故選:C.【點睛】本題考查直線與圓相交弦長問題,掌握垂徑定理是求解圓弦長問題的關鍵4、B【解析】由垂直關系得出直線l方程,聯立直線和拋物線方程,利用韋達定理以及數量積公式得出p的值.【詳解】,,即聯立直線和拋物線方程得設,則解得故選:B5、D【解析】根據直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.6、B【解析】因為隨機事件指的是在一定條件下,可能發生,也可能不發生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續兩次拋擲同一個骰子,兩次都出現2點這一事件可能發生也可能不發生,①是隨機事件某人買彩票中獎這一事件可能發生也可能不發生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B7、C【解析】設出圓心坐標,利用圓心到直線的距離相等列方程,求得圓心坐標并求得圓的半徑.【詳解】設圓心坐標為,則或,所以圓的半徑為或.故選:C8、A【解析】根據存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數﹐它的絕對值不是正數”為存在量詞命題,其否定為“任意實數,它的絕對值是正數”,因為,所以為假命題;故選:A9、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.10、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.11、B【解析】由已知結合等比數列的性質即可求解.【詳解】由數列是等比數列,得:,故選:B12、D【解析】利用向量的數量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據空間向量共線基本定理,可設.由坐標運算求得的值,進而求得.即可求得的值.【詳解】根據空間向量共線基本定理,可設由向量的坐標運算可得解方程可得所以.故答案為:【點睛】本題考查了空間向量共線基本定理的應用,根據向量的共線定理求參數,屬于基礎題.14、10【解析】由拋物線的定義根據題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據題設可得,則(舍去負值),故,故填.【點睛】本題考查拋物線的定義和性質,利用已知相等關系求解拋物線方程,然后求解已知點的縱坐標,解題中需要熟練拋物的定義和性質,靈活應用.15、【解析】畫出立體圖形,因為面面,在底面內運動,且始終保持平面,可得點在線段上運動,因為面面,直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內運動,且始終保持平面可得點在線段上運動,面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當最短時,,即最大,即角最大設正方體的邊長為,故故答案為:【點睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動點問題時,應畫出圖形,尋找幾何關系,考查了分析能力和計算能力,屬于難題.16、2【解析】用已知直線方程和圓方程聯立,可以求出交點,再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標為(0,-1),半徑r=2;聯立方程得交點,如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)10【解析】(1)設等差數列的公差為d,利用已知建立方程組,解之可求得數列的通項公式;(2)利用等差數列的前項和公式,化簡即可求解.【小問1詳解】解:設等差數列的公差為d,由已知,,得,解得,則;小問2詳解】解:由(1)得,則由,得或(舍去),所以的值為10.18、(1)(2)【解析】(1)利用等比數列通項公式列出方程組,可求解,,從而寫出;(2)化簡數列,裂項相消法求和即可.【小問1詳解】設數列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴19、(1)證明見解析(2)【解析】(1)根據導數判斷出函數的單調性求出其最大值,即可證出;(2)由(1)知:,再變形即可得出小問1詳解】因為,∴在上單調遞減,又因,故當時,;當時,,所以在上單調遞增,在上單調遞減,所以.【小問2詳解】由(1)知:,兩邊同乘以a得:,∴,即.20、(1)極大值;極小值(2)【解析】(1)利用導數來求得的極大值和極小值.(2)由不等式分離常數,通過構造函數法,結合導數來求得的取值范圍.【小問1詳解】當時,,,令,可得或2所以在區間遞增;在區間遞減.故當時.函數有極大值,故當時,函數有極小值;【小問2詳解】由,有,可化為,令,有,令,有,令,可得,可得函數的增區間為,減區間為,有,可知,有函數為減函數,有,故當時,若恒成立,則實數a的取值范圍為【點睛】求解不等式恒成立問題,可利用分離常數法,結合導數求最值來求解.在利用導數研究函數的過程中,如果一階導數無法解決,可考慮利用二階導數來進行求解.21、(1)3(2),【解析】(1)先求出函數的導數,根據極值點可得導數的零點,從而可求實數的值;(2)由(1)可得函數的單調性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調遞增,在上單調遞減,故在上為增函數,在上為減函數,.又22、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據所選擇的條件,結合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理安全培訓 2
- 2-7邏輯運算的基本規則
- 統編版語文五年級下冊第23課《童年的發現》精美課件
- 新鄉學院《傅里葉分析與小波分析》2023-2024學年第一學期期末試卷
- 聊城大學東昌學院《混凝土結構原理與設計》2023-2024學年第一學期期末試卷
- 樂山師范學院《信息檢索與科技寫作》2023-2024學年第二學期期末試卷
- 四川省江油市2024-2025學年第二學期初三第一次模擬考試化學試題含解析
- 天津市職業大學《隸書技法》2023-2024學年第二學期期末試卷
- 濰坊科技學院《建筑安裝工程概預算》2023-2024學年第一學期期末試卷
- 上海市寶山區上海交大附中2025屆高三下5月第一次質量檢測試題物理試題試卷含解析
- 幼兒園幼兒小籃球活動體能測試表
- 福建省普通高中學生綜合素質學期評價表
- 五年級下冊數學課件 -4.1 用數對確定位置 ︳青島版 (共20張PPT)
- 柏拉圖分析案例
- 巖棉項目申報書_參考模板
- 二襯帶模注漿施工方案
- 《英語委婉語與忌語》PPT課件.ppt
- ISO9001-14001-2015內部審核檢查表
- 風險和機遇應對措施有效性評審記錄表副本
- 調查問卷設計-課件PPT
- 照金參觀學習心得
評論
0/150
提交評論