




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東六校聯盟2024屆數學高二上期末聯考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在區間上的函數滿足:對恒成立,其中為的導函數,則A.B.C.D.2.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.3.設,則曲線在點處的切線的傾斜角是()A. B.C. D.4.已知等比數列的首項為1,公比為2,則=()A. B.C. D.5.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.6.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件7.已知向量,,若與共線,則實數值為()A. B.C.1 D.28.已知直線過點,且其方向向量,則直線的方程為()A. B.C. D.9.函數在單調遞增的一個必要不充分條件是()A. B.C. D.10.設是空間一定點,為空間內任一非零向量,滿足條件的點構成的圖形是()A.圓 B.直線C.平面 D.線段11.日常飲用水通常都是經過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.12.已知正數x,y滿足,則取得最小值時()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數有三個零點,則正實數a的取值范圍為_________14.已知,動點滿足,則點的軌跡方程為___________.15.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.16.已知函數,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的離心率為,設為坐標原點,為橢圓的左頂點,動直線過線段的中點,且與橢圓相交于、兩點.已知當直線的傾斜角為時,(1)求橢圓的標準方程;(2)是否存在定直線,使得直線、分別與相交于、兩點,且點總在以線段為直徑的圓上,若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由18.(12分)已知拋物線,直線與交于兩點且(為坐標原點)(1)求拋物線的方程;(2)設,若直線的傾斜角互補,求的值19.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.20.(12分)在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求直線與所成角的余弦值.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.22.(10分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.(1)證明:PB∥平面AEC(2)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分別構造函數,,,,利用導數研究其單調性即可得出【詳解】令,,,,恒成立,,,,函數在上單調遞增,,令,,,,恒成立,,函數在上單調遞減,,.綜上可得:,故選:D【點睛】函數的性質是高考的重點內容,本題考查的是利用函數的單調性比較大小的問題,通過題目中給定的不等式,分別構造兩個不同的函數求導判出單調性從而比較函數值得大小關系.在討論函數的性質時,必須堅持定義域優先的原則.對于函數實際應用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響2、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.3、C【解析】根據導數的概念可得,再利用導數的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C4、D【解析】數列是首項為1,公比為4的等比數列,然后可算出答案.【詳解】因為等比數列的首項為1,公比為2,所以數列是首項為1,公比為4的等比數列所以故選:D5、A【解析】建立空間直角坐標系,得到相關點的坐標后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標原點,建立如圖所示的空間直角坐標系設三棱柱的棱長為2,則,∴設為平面的一個法向量,由故令,得設直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當的坐標系,得到相關點的坐標后借助向量的運算,將空間圖形的位置關系或數量關系轉化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯系和區別,避免出現錯誤6、C【解析】根據充要條件的定義進行判斷【詳解】解:因為函數為增函數,由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C7、D【解析】根據空間向量共線有,,結合向量的坐標即可求的值.【詳解】由題設,有,,則,可得.故選:D8、D【解析】根據題意和直線的點方向式方程即可得出結果.【詳解】因為直線過點,且方向向量為,由直線的點方向式方程,可得直線的方程為:,整理,得.故選:D9、D【解析】求出導函數,由于函數在區間單調遞增,可得在區間上恒成立,求出的范圍,再根據充分必要條件的定義即可判斷得解.【詳解】由題得,函數在區間單調遞增,在區間上恒成立,而在區間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D10、C【解析】根據法向量的定義可判斷出點所構成的圖形.【詳解】是空間一定點,為空間內任一非零向量,滿足條件,所以,構成的圖形是經過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎題.11、B【解析】由題意求出函數的導函數,然后令即可求解【詳解】因為,所以,則,故選:12、B【解析】根據基本不等式進行求解即可.【詳解】因為正數x,y,所以,當且僅當時取等號,即時,取等號,而,所以解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導易得函數有兩個極值點和,根據題意,由求解.【詳解】由,可得函數有兩個極值點和,,,若函數有三個零點,必有解得或故答案為:14、【解析】表示出、,根據題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】結合圖形可以發現,利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質、直線與圓的位置關系,利用數形結合思想,是解答解析幾何問題的重要途徑.16、.【解析】將代入計算,利用和互為相反數,作差可得,計算可得結果.【詳解】解:函數則.,,作差可得:,即,解得:代入此時成立.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,且直線的方程為或【解析】(1)分析可知,,直線的方程為,設點、,將直線的方程與橢圓的方程聯立,列出韋達定理,利用弦長公式可求得的值,即可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓的方程聯立,列出韋達定理,求出點、,由已知得出,求出的值,即可得出結論.【小問1詳解】解:因為,則,,所以,橢圓的方程為,即,易知點,則點,當直線的傾斜角為時,直線的方程為,設點、,聯立,可得,,由韋達定理可得,,所以,,解得,則,,因此,橢圓的標準方程為.【小問2詳解】解:易知點,若直線與軸重合,則、為橢圓長軸的兩個端點,不合乎題意.設直線的方程為,設點、,聯立,可得,,由韋達定理可得,,直線的斜率為,直線的方程為,故點,同理可得點,,,由題意可得,解得或.因此,存在滿足題設條件的直線,且直線的方程為或,點總在以線段為直徑的圓上.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設直線方程,設交點坐標為、;(2)聯立直線與圓錐曲線的方程,得到關于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關系轉化為、(或、)的形式;(5)代入韋達定理求解.18、(1);(2).【解析】(1)利用韋達定理法即求;(2)由題可求,,再結合條件即得.【小問1詳解】設,,由,得,故,由,可得,即,∴,故拋物線的方程為:;【小問2詳解】設的傾斜角為,則的傾斜角為,∴由,得,∴,∴,同理,由,得,∴,即,故.19、(1);(2).【解析】(1)根據已知求出即得橢圓的方程;(2)設l的方程為,,,聯立直線和橢圓的方程得到韋達定理,根據得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.20、(1)證明見解析;(2);【解析】(1)證明,利用面面垂直的性質可得出平面,再利用面面垂直的判定定理可證得平面平面;(2)連接,以點為坐標原點,、、所在直線分別為軸建立空間直角坐標系,設,根據可得出,求出的值,利用空間向量法可求得直線與所成角的余弦值.【詳解】(1)為的中點,且,則,又因為,則,故四邊形為平行四邊形,因為,故四邊形為矩形,所以,平面平面,平面平面,平面,平面,因為平面,因此,平面平面;(2)連接,由(1)可知,平面,,為的中點,則,以點為坐標原點,所在直線分別為軸建立空間直角坐標系,則、、、、,設,,因為,則,解得,,,則.因此,直線與所成角的余弦值為.21、(1)略;(2)【解析】(1)推導出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點B到面的距離【詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點B到面PCD的距離為【點睛】本題考查線線垂直的證明,考查點面距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題22、【解析】(Ⅰ)連接BD交AC于O點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點O,連接EO.因為ABCD為矩形,所以O為BD中點又E為PD的中點,所以EO∥PB.因為EO?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因為PA⊥平面ABCD,ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理安全培訓 2
- 2-7邏輯運算的基本規則
- 統編版語文五年級下冊第23課《童年的發現》精美課件
- 新鄉學院《傅里葉分析與小波分析》2023-2024學年第一學期期末試卷
- 聊城大學東昌學院《混凝土結構原理與設計》2023-2024學年第一學期期末試卷
- 樂山師范學院《信息檢索與科技寫作》2023-2024學年第二學期期末試卷
- 四川省江油市2024-2025學年第二學期初三第一次模擬考試化學試題含解析
- 天津市職業大學《隸書技法》2023-2024學年第二學期期末試卷
- 濰坊科技學院《建筑安裝工程概預算》2023-2024學年第一學期期末試卷
- 上海市寶山區上海交大附中2025屆高三下5月第一次質量檢測試題物理試題試卷含解析
- 騰訊游戲引擎技術向工業數字孿生的遷移
- 肩關節鏡相關知識
- “趣”破“蛐蛐”小妙招社交魔法課主題班會
- 中國肥胖及代謝疾病外科治療指南(2024版)解讀
- 醫院建設項目驗收管理流程
- 工業能源管理的數字化轉型
- 設計院保密管理制度(3篇)
- 2-2生態脆弱區的綜合治理(分層練習)解析版
- 《投資理財課件》課件
- 2024年公務員考試公共基礎知識常識題庫及答案(共五套)
- 2024人工智能大模型技術財務應用藍皮書
評論
0/150
提交評論