2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷_第1頁
2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷_第2頁
2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷_第3頁
2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷_第4頁
2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆江西省宜春市袁州區宜春九中高三下學期第一次階段測試數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種2.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.3.由曲線圍成的封閉圖形的面積為()A. B. C. D.4.已知實數集,集合,集合,則()A. B. C. D.5.tan570°=()A. B.- C. D.6.已知復數,滿足,則()A.1 B. C. D.57.已知向量,,,若,則()A. B. C. D.8.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件9.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]10.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個11.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.12.已知為虛數單位,實數滿足,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.14.在數列中,已知,則數列的的前項和為__________.15.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.16.如圖,在長方體中,,E,F,G分別為的中點,點P在平面ABCD內,若直線平面EFG,則線段長度的最小值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該校考人名校的人數;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,18.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.19.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數k的值.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.21.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)已知函數.(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.2、B【解析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.3、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.4、A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.5、A【解析】

直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.6、A【解析】

首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.7、A【解析】

根據向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據向量平行關系求解參數值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.8、D【解析】

結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.9、B【解析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.10、B【解析】

圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.11、D【解析】

先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.12、D【解析】,則故選D.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】

由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.14、【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.15、【解析】

點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.16、【解析】

如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F,G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關系的證明,考查立體幾何中的軌跡問題,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該??既朊5娜藬导s為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.18、(1)(2)見解析【解析】

(1)設,求出后由二次函數知識得最小值,從而得,即得橢圓方程;(2)設直線的方程為,代入橢圓方程整理,設,由韋達定理得,設,利用三點共線,求得,然后驗證即可.【詳解】解:(1)設,則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設直線的方程為,聯立,得.設,則,設,因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設而不求思想,設,設直線方程,應用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.19、(1);(2)或.【解析】

(1)聯立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數關系解決相交弦問題,考查計算求解能力,屬于中檔題.20、(Ⅰ)6(Ⅱ)【解析】

(Ⅰ)化簡得到直線的普通方程化為,,是以點為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設,則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標方程變形為,所以的普通方程分別為,是以點為圓心,為半徑的圓,設點到直線的距離為,則,所以.(Ⅱ)的標準方程為,所以參數方程為(為參數),設,,因為,所以,所以.【點睛】本題考查了參數方程,極坐標方程,意在考查學生的計算能力和應用能力.21、(1);(2)【解析】

試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論