




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.我國的釣魚島面積約為4400000m2,用科學記數法表示為()A.4.4×106B.44×105C.4×106D.0.44×1072.數據”1,2,1,3,1”的眾數是()A.1B.1.5C.1.6D.33.二次函數的圖象如圖所示,則下列各式中錯誤的是()A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=04.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體5.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.6.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.327.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=18.如圖,將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數是()A.70° B.65° C.60° D.55°9.在下列交通標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.10.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.12.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點P是斜邊AB上的點,過點P作⊙C的一條切線PQ(點Q是切點),則線段PQ的最小值為_____.13.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.14.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.15.已知點P(a,b)在反比例函數y=的圖象上,則ab=_____.16.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.17.將函數y=3x+1的圖象沿y軸向下平移2個單位長度,所得直線的函數表達式為_____.三、解答題(共7小題,滿分69分)18.(10分)(1)計算:sin45°(2)解不等式組:19.(5分)如圖,已知二次函數的圖象經過,兩點.求這個二次函數的解析式;設該二次函數的對稱軸與軸交于點,連接,,求的面積.20.(8分)如圖,一次函數(為常數,且)的圖像與反比例函數的圖像交于,兩點.求一次函數的表達式;若將直線向下平移個單位長度后與反比例函數的圖像有且只有一個公共點,求的值.21.(10分)先化簡,再求值:,其中x=-522.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:四邊形BFDE是平行四邊形.23.(12分)在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.24.(14分)某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】4400000=4.4×1.故選A.點睛:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.2、A【解析】
眾數指一組數據中出現次數最多的數據,根據眾數的定義就可以求解.【詳解】在這一組數據中1是出現次數最多的,故眾數是1.故選:A.【點睛】本題為統計題,考查眾數的意義.眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.3、B【解析】
根據二次函數的圖象與性質逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負半軸,∴,∴,故A正確;當x=1時,,即,故B錯誤;當x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數圖象與系數之間的關系,解題的關鍵是熟練掌握二次函數各系數的意義以及二次函數的圖象與性質.4、D【解析】
本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.5、D【解析】
如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.6、B【解析】
根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.7、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗8、B【解析】
根據圖形旋轉的性質得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉的性質,等腰三角形和直角三角形的性質,掌握等腰三角形和直角三角形的性質定理,是解題的關鍵.9、C【解析】
根據軸對稱圖形和中心對稱圖形的定義進行分析即可.【詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項錯誤.故選C.【點睛】考點:1、中心對稱圖形;2、軸對稱圖形10、C【解析】試題分析:把方程的解代入方程,可以求出字母系數a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:根據矩形的性質求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點:矩形的性質;平行四邊形的性質點評:本題考查了矩形的性質,平行四邊形的性質,三角形的面積的應用,解此題的關鍵是能根據求出的結果得出規律,注意:等底等高的三角形的面積相等12、.【解析】
當PC⊥AB時,線段PQ最短;連接CP、CQ,根據勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據勾股定理得:PQ2=CP2﹣CQ2,∴當PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點睛】本題考查了切線的性質以及勾股定理的運用;注意掌握輔助線的作法,注意當PC⊥AB時,線段PQ最短是關鍵.13、1【解析】
如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考常考題型.14、1【解析】
如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據兩點之間線段最短解決最短問題.15、2【解析】【分析】接把點P(a,b)代入反比例函數y=即可得出結論.【詳解】∵點P(a,b)在反比例函數y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數圖象上點的坐標特點,熟知反比例函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.16、2【解析】
連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關于半徑的方程,求得圓半徑即可【詳解】設AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關鍵是利用勾股定理求關于半徑的方程.17、y=3x-1【解析】∵y=3x+1的圖象沿y軸向下平移2個單位長度,∴平移后所得圖象對應的函數關系式為:y=3x+1﹣2,即y=3x﹣1.故答案為y=3x﹣1.三、解答題(共7小題,滿分69分)18、(1);(2)﹣2<x≤1.【解析】
(1)根據絕對值、特殊角的三角函數值可以解答本題;(2)根據解一元一次不等式組的方法可以解答本題.【詳解】(1)sin45°=3-+×-5+×=3-+3-5+1=7--5;(2)(2)由不等式①,得x>-2,由不等式②,得x≤1,故原不等式組的解集是-2<x≤1.【點睛】本題考查解一元一次不等式組、實數的運算、特殊角的三角函數值,解答本題的關鍵是明確解它們各自的解答方法.19、見解析【解析】
(1)二次函數圖象經過A(2,0)、B(0,-6)兩點,兩點代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出對稱軸方程,寫出C點的坐標,計算出AC,然后由面積公式計算值.【詳解】(1)把,代入得,解得.∴這個二次函數解析式為.(2)∵拋物線對稱軸為直線,∴的坐標為,∴,∴.【點睛】本題是二次函數的綜合題,要會求二次函數的對稱軸,會運用面積公式.20、(1);(2)1或9.【解析】試題分析:(1)把A(-2,b)的坐標分別代入一次函數和反比例函數表達式,求得k、b的值,即可得一次函數的解析式;(2)直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數表達式為y=x+5-m,根據平移后的圖象與反比例函數的圖象有且只有一個公共點,把兩個解析式聯立得方程組,解方程組得一個一元二次方程,令△=0,即可求得m的值.試題解析:(1)根據題意,把A(-2,b)的坐標分別代入一次函數和反比例函數表達式,得,解得,所以一次函數的表達式為y=x+5.(2)將直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數表達式為y=x+5-m.由得,x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,解得m=1或9.點睛:本題考查了反比例函數與一次函數的交點問題,求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解.21、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.22、證明見解析【解析】
∵四邊形ABCD是平行四邊形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四邊形BFDE是平行四邊形.23、(1)證明見解析;(2)△APQ是等邊三角形.【解析】
(1)根據等邊三角形的性質可得AB=AC,再根據SAS證明△ABP≌△ACQ;(2)根據全等三角形的性質得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關鍵.24、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 納稅人信息管理的重要性試題及答案
- 激光技術工程師考試準備策略試題及答案
- 靈活運用不同學習資源備戰育嬰師考試試題及答案
- 紡織生產的管理優化方法試題及答案
- 學好衛生管理考試課程要點試題及答案
- 有效控制焦慮心理迎接育嬰師考試試題及答案
- 文化產品的生命周期管理方法試題及答案
- 尋求國際法試題及答案
- 持續進步的專利考試試題與答案
- 搞笑測試題及答案
- 耳穴壓豆治療便秘
- 2023年長江產業投資集團有限公司招聘考試真題
- 中華人民共和國安全生產法知識培訓
- 機械CAD、CAM-形考任務二-國開-參考資料
- 腫瘤中醫治療及調養
- 婦產科課件-早產臨床防治指南(2024)解讀
- 施工現場機械設備管理規定
- 高質量數字化轉型技術解決方案集(2024上半年度)
- 住房城鄉建設科學技術計劃項目科研開發類申報書
- 廣東省佛山市S6高質量發展聯盟2023-2024學年高一下學期4月期中考試數學
- 道路旅客運輸企業雙重預防機制建設指導手冊
評論
0/150
提交評論