金平區2022-2023學年中考數學四模試卷含解析_第1頁
金平區2022-2023學年中考數學四模試卷含解析_第2頁
金平區2022-2023學年中考數學四模試卷含解析_第3頁
金平區2022-2023學年中考數學四模試卷含解析_第4頁
金平區2022-2023學年中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數據,并算出兩數之和,其中“和為7”的頻數及頻率如下表:轉盤總次數10203050100150180240330450“和為7”出現頻數27101630465981110150“和為7”出現頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續進行下去,根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.352.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.3.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.4.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.65.如圖,下列各三角形中的三個數之間均具有相同的規律,根據此規律,最后一個三角形中y與n之間的關系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+16.一艘輪船和一艘漁船同時沿各自的航向從港口O出發,如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數為()A.50° B.60° C.70° D.80°7.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定8.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣79.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結論錯誤的是()A.AEEC=BEED B.AE10.化簡:-,結果正確的是()A.1 B. C. D.11.通過觀察下面每個圖形中5個實數的關系,得出第四個圖形中y的值是()A.8 B.﹣8 C.﹣12 D.1212.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a≥3 B.a>3 C.a≤3 D.a<3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某校體育室里有球類數量如下表:球類籃球排球足球數量354如果隨機拿出一個球(每一個球被拿出來的可能性是一樣的),那么拿出一個球是足球的可能性是_____.14.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.15.已知拋物線的部分圖象如圖所示,根據函數圖象可知,當y>0時,x的取值范圍是__.16.如圖,某商店營業大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為____米.(結果保留兩個有效數字)(參考數據;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.2017年7月27日上映的國產電影《戰狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數法表示為_____元.18.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.20.(6分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?21.(6分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.22.(8分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數.求籃板頂端F到地面的距離.(結果精確到0.1m;參考數據:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)23.(8分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.24.(10分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?25.(10分)一件上衣,每件原價500元,第一次降價后,銷售甚慢,于是再次進行大幅降價,第二次降價的百分率是第一次降價的百分率的2倍,結果這批上衣以每件240元的價格迅速售出,求兩次降價的百分率各是多少.26.(12分)某校初三進行了第三次模擬考試,該校領導為了了解學生的數學考試情況,抽樣調查了部分學生的數學成績,并將抽樣的數據進行了如下整理.(1)填空_______,_______,數學成績的中位數所在的等級_________.(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數;(3)已知抽樣調查學生的數學成績平均分為102分,求A級學生的數學成績的平均分數.①如下分數段整理樣本等級等級分數段各組總分人數48435741712②根據上表繪制扇形統計圖27.(12分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率即可.【詳解】由表中數據可知,出現“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.2、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A3、D【解析】

由旋轉的性質得到AB=BE,根據菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據三角函數的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.4、A【解析】

根據三角函數的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A5、B【解析】

∵觀察可知:左邊三角形的數字規律為:1,2,…,n,右邊三角形的數字規律為:2,22,…,2下邊三角形的數字規律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關系式是y=2n+n.故選B.【點睛】考點:規律型:數字的變化類.6、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關鍵.7、C【解析】

因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.8、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關鍵.當分母不等于零時,分式有意義;當分母等于零時,分式無意義.分式是否有意義與分子的取值無關.9、A【解析】

利用平行線的性質以及相似三角形的性質一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質,相似三角形的判定和性質,平行線分線段成比例定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.10、B【解析】

先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關鍵就是熟練掌握運算規則.11、D【解析】

根據前三個圖形中數字之間的關系找出運算規律,再代入數據即可求出第四個圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點睛】本題考查了規律型中數字的變化類,根據圖形中數與數之間的關系找出運算規律是解題的關鍵.12、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先求出球的總數,再用足球數除以總數即為所求.【詳解】解:一共有球3+5+4=12(個),其中足球有4個,∴拿出一個球是足球的可能性=.【點睛】本題考查了概率,屬于簡單題,熟悉概率概念,列出式子是解題關鍵.14、1.【解析】

由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據勾股定理,得.故答案是:1.15、【解析】

根據拋物線的對稱軸以及拋物線與x軸的一個交點,確定拋物線與x軸的另一個交點,再結合圖象即可得出答案.【詳解】解:根據二次函數圖象可知:拋物線的對稱軸為直線,與x軸的一個交點為(-1,0),∴拋物線與x軸的另一個交點為(3,0),結合圖象可知,當y>0時,即x軸上方的圖象,對應的x的取值范圍是,故答案為:.【點睛】本題考查了二次函數與不等式的問題,解題的關鍵是通過圖象確定拋物線與x軸的另一個交點,并熟悉二次函數與不等式的關系.16、6.2【解析】

根據題意和銳角三角函數可以求得BC的長,從而可以解答本題.【詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為:6.2.【點睛】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數和數形結合的思想解答.17、5.68×109【解析】試題解析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.56.8億故答案為18、12.2【解析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據垂徑定理得:DH=2,設圓O的半徑為r,根據勾股定理列方程可得結論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設圓O的半徑為r,根據勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質,解答本題的關鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質.20、(1)40%;(2)2616.【解析】

(1)設A市投資“改水工程”的年平均增長率是x.根據:2008年,A市投入600萬元用于“改水工程”,2010年該市計劃投資“改水工程”1176萬元,列方程求解;(2)根據(1)中求得的增長率,分別求得2009年和2010年的投資,最后求和即可.【詳解】解:(1)設A市投資“改水工程”年平均增長率是x,則.解之,得或(不合題意,舍去).所以,A市投資“改水工程”年平均增長率為40%.(2)600+600×1.4+1176=2616(萬元).A市三年共投資“改水工程”2616萬元.21、證明見試題解析.【解析】試題分析:首先根據∠ACD=∠BCE得出∠ACB=∠DCE,結合已知條件利用SAS判定△ABC和△DEC全等,從而得出答案.試題解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考點:三角形全等的證明22、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點睛】本題考查解直角三角形、銳角三角函數、解題的關鍵是添加輔助線,構造直角三角形,記住銳角三角函數的定義.23、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質、銳角三角函數、勾股定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,正確尋找相似三角形,構建方程解決問題嗎,屬于中考壓軸題.24、(1);(2)淇淇與嘉嘉抽到勾股數的可能性不一樣.【解析】試題分析:(1)根據等可能事件的概率的定義,分別確定總的可能性和是勾股數的情況的個數;(2)用列表法列舉出所有的情況和兩張卡片上的數都是勾股數的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現4種等可能結果,其中抽到的卡片上的數是勾股數的結果有3種,所以嘉嘉抽取一張卡片上的數是勾股數的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現的結果有12種,其中抽到的兩張卡片上的數都是勾股數的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數的可能性不一樣.25、40%【解析】

先設第次降價的百分率是x,則第一次降價后的價格為500(1-x)元,第二次降價后的價格為500(1-2x),根據兩次降價后的價格是240元建立方程,求出其解即可.【詳解】第一次降價的百分率為x,則第二次降價的百分率為2x,根據題意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.則第一次降價的百分率為20%,第二次降價的百分率為40%.【點睛】本題考查了一元二次方程解實際問題,讀懂題意,找出題目中的等量關系,列出方程,求出符合題的解即可.26、(1)6;8;B;(2)120人;(3)113分.【解析】

(1)根據表格中的數據和扇形統計圖中的數據可以求得本次抽查的人數,從而可以得到m、n的值,從而可以得到數學成績的中位數所在的等級;

(2)根據表格中的數據可以求得D等級的人數;

(3)根據表格中的數據,可以計算出A等級學生的數學成績的平均分數.【詳解】(1)本次抽查的學生有:(人),

數學成績的中位數所在的等級B,

故答案為:6,11,B;

(2)120(人),

答:D等級的約有120人;

(3)由表可得,

A等級學生的數學成績的平均分數:(分),

即A等級學生的數學成績的平均分是113分.【點睛】本題考查了扇形統計圖、中位數、加權平均數,解答本題的關鍵是明確題意,利用數形結合的思想解答.27、(1)證明見解析;(1)證明見解析;(3)1.【解析】

(1)連接OB、OC、OD,根據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論