




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=142.已知常數k<0,b>0,則函數y=kx+b,的圖象大致是下圖中的()A. B.C. D.3.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為24.近似數精確到()A.十分位 B.個位 C.十位 D.百位5.下列四個幾何體中,主視圖與左視圖相同的幾何體有()A.1個 B.2個 C.3個 D.4個6.當x=1時,代數式x3+x+m的值是7,則當x=﹣1時,這個代數式的值是()A.7 B.3 C.1 D.﹣77.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.608.實數a在數軸上對應點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a9.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC10.如圖,若干個全等的正五邊形排成環狀,圖中所示的是前3個正五邊形,要完成這一圓環還需正五邊形的個數為()A.10 B.9 C.8 D.7二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm12.若正六邊形的內切圓半徑為2,則其外接圓半徑為__________.13.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數為_______°.14.邊長為3的正方形網格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.15.二次函數的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).16.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,圓M經過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在圓M上,開口向下,且經過點B,求此拋物線的函數解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.18.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?19.(8分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學從5個項目中任選一個,恰好是田賽項目的概率P為;該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.20.(8分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.21.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO22.(10分)如圖,,,,求證:。23.(12分)如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.24.如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.2、D【解析】
當k<0,b>0時,直線經過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數、反比例函數的圖象與性質.關鍵是明確系數與圖象的位置的聯系.3、A【解析】試題解析:根據主視圖和左視圖為矩形是柱體,根據俯視圖是圓可判斷出這個幾何體應該是圓柱,再根據左視圖的高度得出圓柱體的高為2;故選A.考點:由三視圖判斷幾何體.4、C【解析】
根據近似數的精確度:近似數5.0×102精確到十位.故選C.考點:近似數和有效數字5、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長方形;故選D.6、B【解析】
因為當x=1時,代數式的值是7,所以1+1+m=7,所以m=5,當x=-1時,=-1-1+5=3,故選B.7、B【解析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.8、D【解析】
根據實數a在數軸上的位置,判斷a,﹣a,a2在數軸上的相對位置,根據數軸上右邊的數大于左邊的數進行判斷.【詳解】由數軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數的大小比較,解答本題的關鍵是根據數軸判斷出a,﹣a,a2的位置.9、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.10、D【解析】分析:先根據多邊形的內角和公式(n﹣2)?180°求出正五邊形的每一個內角的度數,再延長五邊形的兩邊相交于一點,并根據四邊形的內角和求出這個角的度數,然后根據周角等于360°求出完成這一圓環需要的正五邊形的個數,然后減去3即可得解.詳解:∵五邊形的內角和為(5﹣2)?180°=540°,∴正五邊形的每一個內角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經有3個五邊形,∴1﹣3=7,即完成這一圓環還需7個五邊形.故選D.點睛:本題考查了多邊形的內角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數是解題的關鍵,注意需要減去已有的3個正五邊形.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據三角形的面積公式求出=,根據等腰三角形的性質得到BD=DC=BC,根據勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據三角形的面積公式求出腰與底的比是解題的關12、【解析】
根據題意畫出草圖,可得OG=2,,因此利用三角函數便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內接圓和外接圓,關鍵在于根據題意畫出草圖,再根據三角函數求解,這是多邊形問題的解題思路.13、48°【解析】
如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數,利用圓周角定理可求出∠AOC的度數,由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.14、【解析】
根據同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.【點睛】本題主要考查了圓周角定理、銳角三角函數的定義.解答網格中的角的三角函數值時,一般是將所求的角與直角三角形中的等角聯系起來,通過解直角三角形中的三角函數值來解答問題.15、①②④【解析】
根據拋物線的對稱軸判斷①,根據拋物線與x軸的交點坐標判斷②,根據函數圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數y=ax2+bx+c的圖象與x軸的交點坐標為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當x>1時,y隨x值的增大而增大,④正確;當y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數圖象與系數之間的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數確定.16、【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質與判定、含30°直角三角形的性質以及直角三角形斜邊的中線的性質.此題難度適中,屬于中考常見題型,求出OP的長是解題關鍵.三、解答題(共8題,共72分)17、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.【解析】分析:(1)令已知的直線的解析式中x=0,可求出B點坐標,令y=0,可求出A點坐標;(2)根據A、B的坐標易得到M點坐標,若拋物線的頂點C在⊙M上,那么C點必為拋物線對稱軸與⊙O的交點;根據A、B的坐標可求出AB的長,進而可得到⊙M的半徑及C點的坐標,再用待定系數法求解即可;(3)在(2)中已經求得了C點坐標,即可得到AC、BC的長;由圓周角定理:∠ACB=90°,所以此題可根據兩直角三角形的對應直角邊的不同來求出不同的P點坐標.本題解析:(1)對于直線,當時,;當時,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB為⊙M的直徑,∴點M為AB的中點,M(﹣4,﹣3),∵MC∥y軸,MC=5,∴C(﹣4,2),設拋物線的解析式為y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴拋物線的解析式為,即;(3)存在.當y=0時,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,設P(t,-6),∵∴=20,即||=1,當=-1,解得,,此時P點坐標為(﹣4+,-1)或(﹣4﹣,-1);當時,解得=﹣4+,=﹣4﹣;此時P點坐標為(﹣4+,1)或(﹣4﹣,1).綜上所述,P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.點睛:本題考查了二次函數的綜合應用及頂點式求二次函數的解析式和一元二次方程的解法,本題的綜合性較強,注意分類討論的思想應用.18、(1);(2)淇淇與嘉嘉抽到勾股數的可能性不一樣.【解析】試題分析:(1)根據等可能事件的概率的定義,分別確定總的可能性和是勾股數的情況的個數;(2)用列表法列舉出所有的情況和兩張卡片上的數都是勾股數的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現4種等可能結果,其中抽到的卡片上的數是勾股數的結果有3種,所以嘉嘉抽取一張卡片上的數是勾股數的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現的結果有12種,其中抽到的兩張卡片上的數都是勾股數的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數的可能性不一樣.19、(1);(1);(3);【解析】
(1)直接根據概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數,再找出一個徑賽項目和一個田賽項目的結果數,然后根據概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數,然后根據概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數,其中一個徑賽項目和一個田賽項目的結果數為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.20、(1)30°;(2)20°;【解析】
(1)利用圓切線的性質求解;(2)連接OQ,利用圓的切線性質及角之間的關系求解。【詳解】(1)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質及圓中集合問題的綜合運等.21、3【解析】試題分析:本題考查了相似三角形的判定與性質,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO22、見解析【解析】
據∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角23、(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.【解析】
(1)根據題意得出,即可得出結論;(2)先證明四邊形是平行四邊形,再由菱形的性質得出,證明四邊形是矩形,得出對角線相等,即可得出結論.【詳解】(1)解:四邊形ACBD是菱形;理由如下:根據題意得:AC=BC=BD=AD,∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);(2)證明:∵DE∥AB,BE∥CD,∴四邊形BEDM是平行四邊形,∵四邊形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四邊形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 流動酒席出售合同范本
- 鄉下洋房售賣合同范本
- 簡單租場地合同范本
- 拆活動板房合同范本
- 共同買店面合同范本
- 玉米批發合同范本
- 畜禽疫苗銷售合同范本
- 建筑木工包工合同范本
- 小切口歷史-中國古代歷代貨幣考點匯編
- 老人贈送地基合同范本
- 生產車間5S稽核評分表
- cmk 設備能力分析計數表格
- 道路運輸領域重大事故風險鏈魚骨圖
- 河南2023年河南省農村信用社(農商銀行)員工招聘考試參考題庫含答案詳解
- 法蘭西喜劇院
- 電力市場交易體系規則培訓PPT
- 2022年新改版教科版五年級下冊科學全冊實驗記錄單(實驗必備)
- 醫學檢驗心壁的組織結構
- 江蘇省南京市聯合體2022-2023八年級初二下學期道德與法治期中試卷+答案
- 《小池》說課稿 小學一年級語文教案PPT模板下載
- 112尿道肉阜臨床路徑
評論
0/150
提交評論