




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1802.某大學(xué)計算機學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學(xué)習(xí)、服務(wù)器開發(fā)五個方向展開研究,且每個方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種3.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,4.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.5.已知定義在上的函數(shù)的周期為4,當(dāng)時,,則()A. B. C. D.6.已知復(fù)數(shù)z滿足,則在復(fù)平面上對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.8.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.9.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.10.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.11.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.12.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.11二、填空題:本題共4小題,每小題5分,共20分。13.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.14.若,則__________.15.已知函數(shù)在點處的切線經(jīng)過原點,函數(shù)的最小值為,則________.16.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:.18.(12分)已知橢圓,直線不過原點且不平行于坐標(biāo)軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.19.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.20.(12分)對于正整數(shù),如果個整數(shù)滿足,且,則稱數(shù)組為的一個“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對于給定的整數(shù),設(shè)是的一個“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時,稱這兩個“正整數(shù)分拆”是相同的.)21.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應(yīng)用和二項式展開式的通項公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.2、B【解析】
將人臉識別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當(dāng)人臉識別方向有2人時,有種,當(dāng)人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、A【解析】
設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時,,,排除B、D選項;因為,,此時,,當(dāng)平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.4、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.5、A【解析】
因為給出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時,,,,.故選:A.【點睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運算性質(zhì),屬于中檔題.6、A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對應(yīng)的點的坐標(biāo)為,在第一象限.故選:A.【點睛】本題考查共軛復(fù)數(shù)的求法,考查對復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對應(yīng)的點,考查運算能力,屬于常考題.7、D【解析】
根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.8、D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.9、D【解析】
設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】
作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.11、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.12、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14、【解析】
由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.15、0【解析】
求出,求出切線點斜式方程,原點坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當(dāng)時,;當(dāng)時,.故函數(shù)的最小值,所以.故答案為:0.【點睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..16、192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯位相減法即可得出.【詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【點睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.18、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點的坐標(biāo),第二步再整理點的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設(shè)點的橫坐標(biāo)為.∴由得,即將點的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r,四邊形為平行四邊形.考點:直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點弦,當(dāng)直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標(biāo),求直線的斜率,或知道直線斜率求中點坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時,也可以選擇點差法,設(shè),,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結(jié)果,(2)對于用坐標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯(lián)立求兩個坐標(biāo),最后求斜率.19、(1)(2)不存在;詳見解析【解析】
(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數(shù),,使得,.【點睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.20、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時,,為奇數(shù)時,;(Ⅲ)證明見解析,,【解析】
(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當(dāng)為偶數(shù)時,最大為,當(dāng)為奇數(shù)時,最大為,得到答案.(Ⅲ)討論當(dāng)為奇數(shù)時,,至少存在一個全為1的拆分,故,當(dāng)為偶數(shù)時,根據(jù)對應(yīng)關(guān)系得到,再計算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當(dāng)為偶數(shù)時,時,最大為;當(dāng)為奇數(shù)時,時,最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時,最大為.(Ⅲ)當(dāng)為奇數(shù)時,,至少存在一個全為1的拆分,故;當(dāng)為偶數(shù)時,設(shè)是每個數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時,偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時,偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時,對于偶數(shù)“正整數(shù)分拆”,除了各項不全為的奇數(shù)拆分外,至少多出一項各項均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.21、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當(dāng)時,在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小學(xué)教師資格《綜合素質(zhì)》時事熱點題目解析及答案集
- 2025-2030全球及中國汽車簾式安全氣囊行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 生態(tài)旅游與生物多樣性經(jīng)濟-全面剖析
- 2025年軟件設(shè)計師專業(yè)考試模擬試卷:軟件需求分析與設(shè)計試題
- 2025-2030全球及中國收入周期管理解決方案行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025-2030全球及中國工業(yè)支撐劑行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025-2030全球及中國光數(shù)據(jù)存儲設(shè)備行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 比斯拉馬語中的傳統(tǒng)兒童歌謠圖案詞匯研究論文
- 2025-2030全球及中國K-12國際學(xué)校行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 斐濟語中的傳統(tǒng)漁業(yè)詞匯分析論文
- 2023機關(guān)公文寫作與處理PPT模板
- 基坑支護、降水及土方開挖專項施工方案
- 幼兒數(shù)字1-100字帖練習(xí)
- 細(xì)胞生物學(xué)-7細(xì)胞信號轉(zhuǎn)導(dǎo)課件
- 攪拌站安全培訓(xùn)試卷
- 茶葉市場營銷講義
- 走進(jìn)中國傳統(tǒng)節(jié)日 詳細(xì)版課件
- GB∕T 37244-2018 質(zhì)子交換膜燃料電池汽車用燃料 氫氣
- API SPEC 5DP-2020鉆桿規(guī)范
- 乙肝兩對半ppt課件
- 鍋爐空氣預(yù)熱器拆除安裝方案
評論
0/150
提交評論