2022年黃石市重點中學高三下學期聯考數學試題含解析_第1頁
2022年黃石市重點中學高三下學期聯考數學試題含解析_第2頁
2022年黃石市重點中學高三下學期聯考數學試題含解析_第3頁
2022年黃石市重點中學高三下學期聯考數學試題含解析_第4頁
2022年黃石市重點中學高三下學期聯考數學試題含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.2.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.63.復數(為虛數單位),則等于()A.3 B.C.2 D.4.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.5.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業里程達到13.1萬公里,其中高鐵營業里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列6.已知實數、滿足不等式組,則的最大值為()A. B. C. D.7.我國著名數學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數可以表示為兩個素數的和”(注:如果一個大于的整數除了和自身外無其他正因數,則稱這個整數為素數),在不超過的素數中,隨機選取個不同的素數、,則的概率是()A. B. C. D.8.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.設,滿足,則的取值范圍是()A. B. C. D.10.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件11.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.412.執行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:14.已知函數,若關于的方程在定義域上有四個不同的解,則實數的取值范圍是_______.15.若,則_________.16.已知函數,則函數的極大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.18.(12分)若不等式在時恒成立,則的取值范圍是__________.19.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.20.(12分)已知函數(1)求函數的單調遞增區間(2)記函數的圖象為曲線,設點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數存在“中值和諧切線”,當時,函數是否存在“中值和諧切線”請說明理由21.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.22.(10分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.2.B【解析】

根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.3.D【解析】

利用復數代數形式的乘除運算化簡,從而求得,然后直接利用復數模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數的問題,涉及到的知識點有復數的乘除運算,復數的共軛復數,復數的模,屬于基礎題目.4.B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.5.D【解析】

由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D【點睛】本題考查統計的知識,考查數據處理能力和應用意識,是基礎題6.A【解析】

畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.7.B【解析】

先列舉出不超過的素數,并列舉出所有的基本事件以及事件“在不超過的素數中,隨機選取個不同的素數、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數有:、、、、、,在不超過的素數中,隨機選取個不同的素數,所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數中,隨機選取個不同的素數、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.8.A【解析】

由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.9.C【解析】

首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規劃中目標函數的取值范圍的問題,屬于基礎題.10.D【解析】

對于A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據元素與集合的關系即可做出判斷.【詳解】選項A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.11.C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.12.B【解析】

由題意,框圖的作用是求分段函數的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.14.【解析】

由題意可在定義域上有四個不同的解等價于關于原點對稱的函數與函數的圖象有兩個交點,運用參變分離和構造函數,進而借助導數分析單調性與極值,畫出函數圖象,即可得到所求范圍.【詳解】已知定義在上的函數若在定義域上有四個不同的解等價于關于原點對稱的函數與函數f(x)=lnx-x(x>0)的圖象有兩個交點,聯立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數解決方程的根的問題,還考查了等價轉化思想與函數對稱性的應用,屬于難題.15.【解析】

因為,所以.因為,所以,又,所以,所以..16.【解析】

對函數求導,通過賦值,求得,再對函數單調性進行分析,求得極大值.【詳解】,故解得,,令,解得函數在單調遞增,在單調遞減,故的極大值為故答案為:.【點睛】本題考查函數極值的求解,難點是要通過賦值,求出未知量.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.18.【解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數,故.故.故答案為:.【點睛】本題考查含參數的不等式的恒成立,對于此類問題,優先考慮參變分離,把恒成立問題轉化為不含參數的新函數的最值問題,本題屬于基礎題.19.【解析】

將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系,解題的關鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.20.(1)見解析(2)不存在,見解析【解析】

(1)求出函數的導數,通過討論的范圍求出函數的單調區間即可;(2)求出函數的導數,結合導數的幾何意義,再令,轉化為方程有解問題,即可說明.【詳解】(1)函數的定義域為,所以當時,;,所以函數在上單調遞增當時,①當時,函數在上遞增②,顯然無增區間;③當時,,函數在上遞增,綜上當函數在上單調遞增.當時函數在上單調遞增;當時函數無單調遞增區間當時函數在上單調遞增(2)假設函數存在“中值相依切線”設是曲線上不同的兩個點,且則曲線在點處的切線的斜率為,.令,則,單調遞增,,故無解,假設不成立綜上,假設不成立,所以不存在“中值相依切線”【點睛】本題考查了函數的單調性,導數的幾何意義,考查導數的應用以及分類討論和轉化思想,屬于中檔題.21.證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論