




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.42.函數(shù)f(x)=的圖象大致為()A. B.C. D.3.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.4.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]5.復(fù)數(shù)的虛部為()A. B. C.2 D.6.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.7.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.8.設(shè)為虛數(shù)單位,復(fù)數(shù),則實數(shù)的值是()A.1 B.-1 C.0 D.29.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.11.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.12.已知向量,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,則的最小值是________.14.曲線在處的切線的斜率為________.15.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點,質(zhì)點落入陰影部分的概率是_____________16.已知一個正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左右焦點分別為,離心率,右準(zhǔn)線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當(dāng)取最小值時,與共線.18.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.19.(12分)在直角坐標(biāo)平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設(shè)過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.20.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.21.(12分)已知的內(nèi)角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.22.(10分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.2、D【解析】
根據(jù)函數(shù)為非偶函數(shù)可排除兩個選項,再根據(jù)特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數(shù)圖象的對稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.3、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當(dāng)時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.4、B【解析】
作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關(guān)系可得結(jié)論.5、D【解析】
根據(jù)復(fù)數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算和復(fù)數(shù)的概念.6、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時,,令,在是增函數(shù),時,有一個零點,當(dāng)時,,令當(dāng)時,,在上單調(diào)遞增,當(dāng)時,,在上單調(diào)遞減,所以當(dāng)時,取得最大值,因為在上有3個零點,所以當(dāng)時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.7、A【解析】
根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質(zhì),屬于中檔題.8、A【解析】
根據(jù)復(fù)數(shù)的乘法運算化簡,由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運算化簡可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.9、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.10、C【解析】
先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.11、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.12、A【解析】
投影即為,利用數(shù)量積運算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.14、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.15、【解析】
聯(lián)立直線與拋物線方程求出交點坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.16、【解析】
如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設(shè),,,,,,.故答案為:.【點睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設(shè),則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當(dāng)且僅當(dāng)或時,取最小值,此時,,故與共線.18、(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當(dāng)時,故方程有根,根為或,+0-0+極大值極小值由表可見,當(dāng)時,有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因為,.由數(shù)形結(jié)合可得或.【點睛】本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.19、(1)();(2)證明見解析.【解析】
(1)設(shè)點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設(shè),由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點問題,考查學(xué)生的計算能力,屬于中檔題.20、(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點,.平面平面,平面.平面,.為斜邊的中點,,(2),由(1)可知,為等腰直角三角形,則.以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【點睛】本題考查用面面垂直的性質(zhì)定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時,可以建立空間直角坐標(biāo)系,用空間向量法求解空間角,可避免空間角的作證過程,通過計算求解.21、(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長.【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030衛(wèi)星應(yīng)用產(chǎn)品入市調(diào)查研究報告
- 2025-2030半掛牽引車行業(yè)市場發(fā)展分析及投資前景研究報告
- 2025-2030包裝材料行業(yè)市場深度分析及發(fā)展策略研究報告
- 出租簡易沙發(fā)合同樣本
- 人教版二年級數(shù)學(xué)下學(xué)期期中學(xué)業(yè)質(zhì)量監(jiān)測復(fù)習(xí)年級聯(lián)考習(xí)題
- 2025-2030全球?qū)櫸镫娖餍袠I(yè)發(fā)展趨勢分析及投資前景預(yù)測研究報告
- 2025-2030全球及中國視頻壓縮機(jī)行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030全球及中國咖啡連鎖店行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025-2030全球及中國光療面膜儀行業(yè)競爭格局及未來銷售策略建議研究報告
- 2025-2030信用管理服務(wù)行業(yè)發(fā)展分析及發(fā)展趨勢與投資前景預(yù)測研究報告
- 第6節(jié) 有機(jī)磷農(nóng)藥中毒病人的護(hù)理
- 小學(xué)生安全教育校本教材(中年級版)
- 中職語文 大國工匠——彭祥華
- 數(shù)字化語音存儲與回放系統(tǒng)(畢業(yè)設(shè)計)
- 喜達(dá)屋明星服務(wù)
- 煙草企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化規(guī)范-第3部分-考核評價準(zhǔn)則和方法
- 武漢市控制性詳細(xì)規(guī)劃編制技術(shù)規(guī)程610
- 電子顯微分析試題集1
- ANCA相關(guān)性小血管炎
- 服裝面料采購合同
- 斯倫貝謝定向鉆井和旋轉(zhuǎn)導(dǎo)向
評論
0/150
提交評論