




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遷移學習算法研究莊福振中國科學院計算技術研究所2016年4月18日TrainingDataClassifierUnseenData(…,long,T)good!Whatif…2傳統監督機器學習(1/2)2023/2/1[fromProf.QiangYang]傳統監督機器學習(2/2)32023/2/1傳統監督學習同源、獨立同分布兩個基本假設標注足夠多的訓練樣本在實際應用中通常不能滿足!訓練集測試集分類器訓練集測試集分類器遷移學習42023/2/1實際應用學習場景HP新聞Lenovo新聞不同源、分布不一致人工標記訓練樣本,費時耗力遷移學習運用已有的知識對不同但相關領域問題進行求解的一種新的機器學習方法放寬了傳統機器學習的兩個基本假設遷移學習場景(1/4)52023/2/1遷移學習場景無處不在遷移知識遷移知識圖像分類HP新聞Lenovo新聞新聞網頁分類異構特征空間6Theappleisthepomaceousfruitoftheappletree,speciesMalusdomesticaintherosefamilyRosaceae...BananaisthecommonnameforatypeoffruitandalsotheherbaceousplantsofthegenusMusawhichproducethiscommonlyeatenfruit...Training:TextFuture:ImagesApplesBananas遷移學習場景(2/4)2023/2/1[fromProf.QiangYang]XinJin,FuzhenZhuang,SinnoJialinPan,ChangyingDu,PingLuo,QingHe:HeterogeneousMulti-taskSemanticFeatureLearningforClassification.CIKM2015:1847-1850.TestTestTrainingTrainingClassifierClassifier72.65%DVDElectronicsElectronics84.60%ElectronicsDrop!遷移學習場景(3/4)72023/2/1[fromProf.QiangYang]8DVDElectronicsBookKitchenClothesVideogameFruitHotelTeaImpractical!遷移學習場景(4/4)2023/2/1[fromProf.QiangYang]OutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders92023/2/1ConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningforTransferLearning102023/2/1IntroductionManytraditionallearningtechniquesworkwellonlyundertheassumption:Trainingandtestdatafollowthesamedistribution
Training(labeled)ClassifierTest(unlabeled)FromdifferentcompaniesEnterpriseNewsClassification:includingtheclasses“ProductAnnouncement”,“Businessscandal”,“Acquisition”,……Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsDifferentdistributionFail!11ConceptLearningforTransferLearning2023/2/1Motivation(1/3)ExampleAnalysis
Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:12Sharesomecommonwords:announcement,price,performance…indicateConceptLearningforTransferLearning2023/2/1Motivation(2/3)ExampleAnalysis:
HPLaserJet,printer,price,performanceetal.LenovoThinkpad,Thinkcentre,price,performanceetal.Thewordsexpressingthesamewordconceptaredomain-dependent
13ProductProductannouncementwordconceptindicatesTheassociationbetweenwordconceptsanddocumentclassesisdomain-independent
ConceptLearningforTransferLearning2023/2/1Motivation(3/3)14Furtherobservations:Differentdomainsmayusesamekeywordstoexpressthesameconcept(denotedasidenticalconcept)Differentdomainsmayalsousedifferentkeywordstoexpressthesameconcept(denotedasalikeconcept)Differentdomainsmayalsohavetheirowndistinctconcepts(denotedasdistinctconcept)TheidenticalandalikeconceptsareusedasthesharedconceptsforknowledgetransferWetrytomodelthesethreekindsofconceptssimultaneouslyfortransferlearningtextclassificationConceptLearningforTransferLearning2023/2/1PreliminaryKnowledgeBasicformulaofmatrixtri-factorization:wheretheinputXistheword-documentco-occurrencematrix
denotesconceptinformation,mayvaryindifferentdomainsFdenotesthedocumentclassificationinformation
indeedistheassociationbetweenwordconceptsanddocumentclasses,mayretainstablecrossdomainsGS15ConceptLearningforTransferLearning2023/2/1Previousmethod-MTrickinSDM2010(1/2)SketchmapofMTrick
SourcedomainXs
FsGsFtGtTargetdomainXtSKnowledgeTransfer16ConceptLearningforTransferLearning2023/2/1Consideringthealikeconcepts MTrick(2/2)OptimizationproblemforMTrickG0isthesupervisioninformationtheassociationSissharedasbridgetotransferknowledge17ConceptLearningforTransferLearningDualTransferLearning(Longetal.,SDM2012),consideringidenticalandalikeconcepts2023/2/1TriplexTransferLearning(TriTL)(1/5)Furtherdividethewordconceptsintothreekinds:
18F1,identicalconcepts;F2,alikeconcepts;F3,distinctconceptsInput:ssourcedomainXr(1≤r≤s)withlabelinformation,ttargetdomainXr(s+1≤r≤s+t)WeproposeTriplexTransferLearningframeworkbasedonmatrixtri-factorization(TriTLforshort)
2023/2/1ConceptLearningforTransferLearningF1,S1andS2
aresharedasthebridgeforknowledgetransferacrossdomainsThesupervisioninformationisintegratedbyGr(1≤r≤s)insourcedomainsTriTL(2/5)OptimizationProblem
192023/2/1ConceptLearningforTransferLearningTriTL(3/5)Wedevelopanalternativelyiterativealgorithmtoderivethesolutionandtheoreticallyanalyzeitsconvergence 202023/2/1ConceptLearningforTransferLearningTriTL(4/5)Classificationontargetdomains When1≤r≤s,Grcontainsthelabelinformation,soweremainitunchangedduringtheiterations
whenxibelongstoclassj,thenGr(i,j)=1,elseGr(i,j)=0Aftertheiteration,weobtaintheoutputGr(s+1≤r≤s+t),thenwecanperformclassificationaccordingtoGr212023/2/1ConceptLearningforTransferLearningTriTL(5/5)AnalysisofAlgorithmConvergence Accordingtothemethodologyofconvergenceanalysisinthetwoworks[Leeetal.,NIPS’01]and[Dingetal.,KDD’06],thefollowingtheoremholds.Theorem(Convergence):Aftereachroundofcalculatingtheiterativeformulas,theobjectivefunctionintheoptimizationproblemwillconvergemonotonically.222023/2/1ConceptLearningforTransferLearning232023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.miscrecscicomptalkDataPreparation(1/3)20Newsgroups Fourtopcategories,eachtopcategorycontainsfoursub-categories SentimentClassification,fourdomains:books,dvd,electronics,kitchenRandomlyselecttwodomainsassources,andtherestastargets,then6problemscanbeconstructed
ConceptLearningforTransferLearning242023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypySourcedomainautosspaceTargetdomainFortheclassificationproblemwithonesourcedomainandonetargetdomain,wecanconstruct144()
problemsDataPreparation(2/3)Constructclassificationtasks(TraditionalTL)ConceptLearningforTransferLearning252023/2/1Constructnewtransferlearningproblemsrec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypyautosspacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.misccomptalkautosgraphicsMoredistinctconceptsmayexist!DataPreparation(3/3)SourcedomainTargetdomainConceptLearningforTransferLearning262023/2/1ComparedAlgorithmsConceptLearningforTransferLearningTraditionallearningAlgorithmsSupervisedLearning:LogisticRegression(LR)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferlearningMethods:CoCC[Daietal.,KDD’07],DTL[Longetal.,SDM’12]Classificationaccuracyisusedastheevaluationmeasure272023/2/1ExperimentalResults(1/3)ConceptLearningforTransferLearningSorttheproblemswiththeaccuracyofLRDegreeoftransferdifficultyeasierGenerally,thelowerofaccuracyofLRcanindicatethehardertotransfer,whilethehigheronesindicatetheeasiertotransferharder282023/2/1ExperimentalResults(2/3)ConceptLearningforTransferLearningComparisonsamongTriTL,DTL,MTrick,CoCC,TSVM,SVMandLRondatasetrecvs.sci(144problems)TriTLcanperformwelleventheaccuracyofLRislowerthan65%292023/2/1ExperimentalResults(3/3)ConceptLearningforTransferLearningResultsonnewtransferlearningproblems,weonlyselecttheproblems,whoseaccuraciesofLRarebetween(50%,55%](Onlyslightlybetterthanrandomclassification,thustheymightbemuchmoredifficult).Weobtain65problemsTriTLalsooutperformsallthebaselinesConclusionsExplicitlydefinethreekindsofwordconcepts,i.e.,identicalconcept,alikeconceptanddistinctconceptProposeageneraltransferlearningframeworkbasedonnonnegativematrixtri-factorization,whichsimultaneouslymodelthethreekindsofconcepts(TriTL)Extensiveexperimentsshowtheeffectivenessoftheproposedapproach,especiallywhenthedistinctconceptsmayexist302023/2/1ConceptLearningforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningConceptLearningforTransferLearning312023/2/1322023/2/1MotivationConceptLearningforTransferLearningProductannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:Sharesomecommonwords:announcement,price,performance…indicateRetrospecttheexample
332023/2/1SomenotationsddocumentydocumentclasszwordconceptSomedefinitionse.g.,p(price|Product),p(LaserJet|Product,)wwordrdomaine.g,p(Product|Productannouncement)PreliminaryKnowledge(1/3)ConceptLearningforTransferLearning342023/2/1ConceptLearningforTransferLearningPreliminaryKnowledge(2/3)ProductLaserJet,printer,announcement,price,ThinkPad,ThinkCentre,announcement,priceProductannouncementp(w|z,r1)p(w|z,r2)p(z|y)p(w|z,r1)≠p(w|z,r2)E.g.,p(LaserJet|Product,HP)≠p(LaserJet|Product,Lenovo)p(z|y,r1)=p(z|y,r2)E.g.,p(Product|Productannoucement,HP)=p(Product|Productannoucement,Lenovo)Alikeconcept352023/2/1DualPLSA
(D-PLSA)Jointprobabilityoverallvariablesp(w,d)=p(w|z)p(z|y)p(d|y)p(y)GivendatadomainX,theproblemofmaximumloglikelihoodislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesalltheparametersp(w|z),p(z|y),p(d|y),p(y).Z
denotesallthelatentvariablesPreliminaryKnowledge(3/3)TheproposedtransferlearningalgorithmbasedonD-PLSA,denotedasHIDCConceptLearningforTransferLearning362023/2/1Identicalconceptp(w|za)p(za|y)AlikeconceptTheextensionandintensionaredomainindependentp(w|zb,r)p(zb|y)HIDC(1/3)Theextensionisdomaindependent,whiletheintensionisdomainindependentConceptLearningforTransferLearning372023/2/1Distinctconceptp(w|zc,r)p(zc|y,r)ThejointprobabilitiesofthesethreegraphicalmodelsHIDC(2/3)TheextensionandintensionarebothdomaindependentConceptLearningforTransferLearning382023/2/1Givens+t
datadomainsX={X1,…,Xs,Xs+1,…,Xs+t},withoutlossofgenerality,thefirstsdomainsaresourcedomains,andthelefttdomainsaretargetdomainsConsiderthethreekindsofconcepts:TheLog
likelihoodfunctionislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesallparametersp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r).HIDC(3/3)ConceptLearningforTransferLearning392023/2/1UsetheEMalgorithmtoderivethesolutionsEStep:ModelSolution(1/4)ConceptLearningforTransferLearning402023/2/1M
Step:ModelSolution(2/4)ConceptLearningforTransferLearning412023/2/1Semi-supervisedEMalgorithm:whenrisfromsourcedomains,thelabeledinformationp(d|y,r)isknownandp(y|r)
canbeinferedp(d|y,r)=1/ny,r,ifdbelongsyindomainr,ny,risthenumberofdocumentsinclassyindomainr,else
p(d|y,c)=0p(y|r)=ny,r/nr
,nr
isthenumberofdocumentsindomainr
whenrisfromsourcedomains,p(d|y,r)andp(y|r)keepunchangedduringtheiterations,whichsupervisetheoptimizingprocessModelSolution(3/4)ConceptLearningforTransferLearning422023/2/1ClassificationfortargetdomainsAfterweobtainthefinalsolutionsofp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r)Wecancomputetheconditionalprobabilities:
ThenthefinalpredictionisDuringtheiterations,alldomainssharep(w|za),p(za|y),p(zb|y),
whichactasthebridgeforknowledgetransferModelSolution(4/4)ConceptLearningforTransferLearning432023/2/1BaselinesComparedAlgorithmsSupervisedLearning:LogisticRegression(LG)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferLearning:CoCC[Daietal.,KDD’07]CD-PLSA[Zhuangetal.,CIKM’10]DTL[Longetal.,SDM’12]OurMethodsHIDCMeasure:classificationaccuracyConceptLearningforTransferLearning442023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(1/5)ConceptLearningforTransferLearning452023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(2/5)ConceptLearningforTransferLearning462023/2/1ExperimentalResults(3/5)ConceptLearningforTransferLearning472023/2/1Sourcedomain:S
(rec.autos,
sci.space),Targetdomain:T(rec.sport.hockey,talk.politics.mideast)STSTDistinctconceptSTAlikeconceptExperimentalResults(4/5)ConceptLearningforTransferLearning482023/2/1ExperimentalResults(5/5)ConceptLearningforTransferLearningIndeed,theproposedprobabilisticmethodHIDCisalsobetterthanTriTLThismayduetothereasonthatthereismoreclearerprobabilisticexplanationofHIDCp1(z,y)=p2(z,y)orp1(z|y)=p2(z|y)whichisbetter?p(z|y)p(y)492023/2/1[1]FuzhenZhuang,PingLuo,HuiXiong,QingHe,YuhongXiong,ZhongzhiShi:ExploitingAssociationsbetweenWordClustersandDocumentClassesforCross-DomainTextCategorization.SDM2010,pp.13-24.[2]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:CollaborativeDual-PLSA:miningdistinctionandcommonalityacrossmultipledomainsfortextclassification.CIKM2010,pp.359-368.[3]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:MiningDistinctionandCommonalityacrossMultipleDomainsUsingGenerativeModelforTextClassification.IEEETrans.Knowl.DataEng.24(11):2025-2039(2012).[3]FuzhenZhuang,PingLuo,ChangyingDu,QingHe,ZhongzhiShi:Triplextransferlearning:exploitingbothsharedanddistinctconceptsfortextclassification.WSDM2013,pp.425-434.[4]FuzhenZhuang,PingLuo,PeifengYin,QingHe,ZhongzhiShi.:ConceptLearningforCross-domainTextClassification:aGeneralProbabilisticFramework.IJCAI2013,pp.1960-1966.ReferencesConceptLearningforTransferLearningOutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders502023/2/1TransferLearningfromMultipleSourceswithAutoencoderRegularization512023/2/1TransferLearningUsingAuto-encoders52Motivation(1/2)TransferlearningbasedonoriginalfeaturespacemayfailtoachievehighperformanceonTargetdomaindataWeconsidertheautoencodertechniquetocollaborativelyfindanewrepresentationofbothsourceandtargetdomaindataElectronicsVideoGames
Compact;easytooperate;verygoodpicture,excited
aboutthequality;lookssharp!Averygood
game!Itisactionpacked
andfullofexcitement.Iamverymuchhooked
onthisgame.522023/2/1TransferLearningUsingAuto-encodersPreviousmethodsoftentransferfromonesourcedomaintoonetargetdomainWeconsidertheconsensusregularizedframeworkforlearningfrommultiplesourcedomainsDVDBookKitchenElectronicsWeproposeatransferlearningframeworkofconsensusregularizationautoencoderstolearnfrommultiplesourcesMotivation(2/2)532023/2/1TransferLearningUsingAuto-encodersAutoencoderNeuralNetworkMinimizingthereconstructionerrortoderivethesolution:whereh,garenonlinearactivationfunction,e.g.,Sigmoidfunction,forencodinganddecoding542023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(1/3)Example:three-classclassificationproblem,threeclassifierspredictinstancesf1f2f3f1f2f3x1111x2333x3222x4231x5313x6123ConstraintSource1:D1Source2:D2Source3:D3552023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(2/3)Example:three-classclassificationproblem,predictiononinstancexMinimalentropy,MaximalConsensusMaximalentropy,MinimalConsensusEntropybasedConsensusMeasure(Luoetal.,CIKM’08)θiistheparametervectorofclassifieri,Cistheclasslabelset562023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(3/3)Forsimplicity,theconsensusmeasureforbinaryclassificationcanberewrittenasInthiswork,weimposetheconsensusregularizationtoautoencoders,andtrytoimprovethelearningperformancefrommultiplesourcedomainssincetheireffectsonmakingthepredictionconsensusaresimilar.572023/2/1TransferLearningUsingAuto-encodersSomeNotations
SourcedomainsGivenrsourcedomains:,i.e.,
,.
ThefirstcorrespondingdatamatrixisTargetdomainThecorrespondingdatamatrixis
Thegoalistotrainaclassifier
ftomakeprecisepredictionson.582023/2/1TransferLearningUsingAuto-encodersFrameworkofCRAThedatafromallsourceandtargetdomainssharethesameencodinganddecodingweightsTheclassifierstrainedfromthenewrepresentationareregularizedtopredictthesameresultsontargetdomaindata592023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ReconstructionError602023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ConsensusRegularization612023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ThetotallossofsourceclassifiersoverthecorrespondingsourcedomaindatawiththehiddenrepresentationWeighdecayterm622023/2/1TransferLearningUsingAuto-encodersTheSolutionofCRAWeusethegradientdescentmethodtoderivethesolutionofallparameters?isthelearningrate.ThetimecomplexityisO(rnmk)Theoutput:theencodinganddecodingparameters,andsourceclassifierswithlatentrepresentation.632023/2/1TransferLearningUsingAuto-encodersTargetClassifierConstructionTwoScheme:Trainthesourceclassifiersbasedonandcombinethemas,whereCombineallthesourcedomaindataasZSandtrainaunifiedclassifierusinganysupervisedlearningalgorithms,e.g.,SVM,LogisticRegression(LR).ThetwoaccuraciesaredenotedasCRAvandCRAu,respectively642023/2/1TransferLearningUsingAuto-encodersDataSets-(1/2)ImageData(fromLuoetal.,CIKM08)(Someexamples)AB
A1A2A3A4B1B2B3B4Threesources:A1B1A2B2A3B3Targetdomain:A4B4Totally,96()3-sourcevs1-targetdomain(3vs1)probleminstancescanbeconstructedfortheexperimentalevaluation652023/2/1TransferLearningUsingAuto-encodersDataSets-(2/2)SentimentClassification(fromBlitzeretal.,ACL07)Four3-sourcevs1-targetdomainclassificationproblemsareconstructedDVDBookKitchenElectronicsTheaccuracyontargetdomaindataisusedastheevaluationmeasureBothSVMandLRareusedtotrainclassifiersonthenewrepresentation662023/2/1TransferLearningUsingAuto-encodersAllComparedAlgorithmsBaselinesSupervisedlearningonoriginalfeatures:SVM
[Joachims,ICML’99],LogisticRegression(LR)[Davidetal.,00]Embeddingmethodbasedonautoencoders(EAER)[Yuetal.,ECML’13]MarginalizedStackedDenoisingAutoencoders
(mSDA)[Chenetal.,ICML’12]TransferComponentAnalysis(TCA)[Panetal.,TNN’11]Transferlearningfrommultiplesources(CCR3)(Luoetal.,CIKM’08)Ourmethod:CRAvandCRAuForthemethodswhichcannothandlemultiplesources,wetraintheclassifiersfromeachsourcedomainandmergeddataofallsources(r+1accuracies).Finally,maximal,meanandminimalvaluesarereported.672023/2/1TransferLearningUsingAuto-encoders68ExperimentalResults-(1/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson96imageclassificationproblems69ExperimentalResults-(2/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson4sentimentclassificationproblemsConclusionsThewellknownrepresentationlearningtechniqueautoencoderisconsidered,andweformalizetheautoencodersandconsensusregularizationintoaunifiedoptimizationframeworkExtensivecomparisonexperimentsonimageandsentimentdataareconductedtoshowtheeffectivenessoftheproposealgorithm702023/2/1TransferLearningUsingAuto-encodersSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders712023/2/1TransferLearningUsingAuto-encodersAutoencoderisanunsupervisedfeaturelearningalgorithm,whichcannoteffectivelymakeuseofthelabelinformationLimitationofBasicAutoencoderContributionofThisWorkWeextendAutoencodertomulti-layerstructure,andincorporatethelabelasonelayerMotivation722023/2/1TransferLearningUsingAuto-encoders源領域和目標領域共享編碼和解碼權重利用KL距離對隱層空間進行約束利用多類回歸模型對類標層進行約束FrameworkofTLDA(1/5)732023/2/1TransferLearningUsingAuto-encoders目標是最小化重構誤差:DeepAutoencoderFrameworkofTLDA(2/5)742023/2/1TransferLearningUsingAuto-encodersKL距離KL距離衡量的是兩個概率分布的差異情況,計算公式如下:以上KL距離并不滿足傳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 12家鄉的喜與憂 第二課時 教學設計-2023-2024學年道德與法治四年級下冊統編版
- Module4 單元整體(教學設計)-2024-2025學年外研版(三起)英語五年級上冊
- 9《知法守法依法維護》(第2課時)教學設計-2024-2025學年道德與法治六年級上冊統編版
- 20《金字塔:不可思議的金字塔》教學設計-2023-2024學年統編版語文五年級下冊
- 19 只有一個地球 教學設計-2024-2025學年語文六年級上冊統編版
- 造瘺袋更換的護理
- 診斷業務趨勢
- 2023六年級英語下冊 Unit 2 Good habits Period 1教學設計 譯林牛津版
- 訊飛智文導出
- 2023九年級物理下冊 第九章 家庭用電9.2家庭電路第1課時 認識家庭電路教學設計 (新版)教科版
- 爬寵飼養箱項目可行性實施報告
- 《 人臉識別技術的隱私威脅研究》范文
- 心理健康促進學習通超星期末考試答案章節答案2024年
- 驢用乳酸菌制劑生產技術規程
- 公司章程與內部管理規則制度
- 20以內加減法口算練習題帶括號填空135
- 百位數加減法練習題連加
- 地下綜合管廊工程機電安裝工程施工方案
- 高速公路路網數字底座研究與建設
- 藥學專業崗位分析報告范文
- 七年級道法上冊 第一單元 少年有夢 單元測試卷(人教版 2024年秋)
評論
0/150
提交評論