




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.2.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.3.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.4.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-15.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.6.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.8.設(shè),,,則()A. B. C. D.9.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.410.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.復(fù)數(shù)()A. B. C.0 D.12.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.14.假設(shè)10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.15.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數(shù)的周期;對于定義在上的函數(shù)若則函數(shù)不是偶函數(shù);“”是“”成立的充分必要條件;若實數(shù)滿足則.16.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.18.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.19.(12分)已知函數(shù).(1)設(shè),若存在兩個極值點,,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).20.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:21.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.22.(10分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.2.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.3.B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.4.D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.5.A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.6.A【解析】
由復(fù)數(shù)的除法運算可整理得到,由此得到對應(yīng)的點的坐標(biāo),從而確定所處象限.【詳解】由得:,對應(yīng)的點的坐標(biāo)為,位于第一象限.故選:.【點睛】本題考查復(fù)數(shù)對應(yīng)的點所在象限的求解,涉及到復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.7.D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.8.A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.9.D【解析】
如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.10.B【解析】
直接利用向量的坐標(biāo)運算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標(biāo)運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.11.C【解析】略12.C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當(dāng)時,;當(dāng)時,.又因為不滿足,所以.【點睛】本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14.【解析】
分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.15.【解析】
對①,根據(jù)周期的定義判定即可.對②,根據(jù)偶函數(shù)滿足的性質(zhì)判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當(dāng)時,所以由周期函數(shù)的定義知不是函數(shù)的周期,故正確;對于定義在上的函數(shù),若,由偶函數(shù)的定義知函數(shù)不是偶函數(shù),故正確;當(dāng)時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數(shù)滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎(chǔ)題.16.【解析】
根據(jù)題意求出點N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】
(1)設(shè),根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設(shè),與橢圓方程聯(lián)立,利用求得;利用韋達(dá)定理表示出與,根據(jù)平行四邊形和向量的坐標(biāo)運算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進(jìn)而得到最終結(jié)果.【詳解】(1)設(shè),則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設(shè),由題意知的斜率存在設(shè),代入得:則,解得:設(shè),,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題,關(guān)鍵是能夠利用已知中所給的等量關(guān)系建立起動點橫縱坐標(biāo)滿足的關(guān)系式,進(jìn)而通過化簡整理得到結(jié)果;易錯點是求得軌跡方程后,忽略的取值范圍.18.(1)(2)定值為0.【解析】
(1)根據(jù)直線方程求焦點坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點坐標(biāo),化簡,再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡得結(jié)果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.19.(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時,恒成立,在上單調(diào)增,,,.(ii)當(dāng)時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.20.(1)(2)見解析【解析】
(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時等號成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據(jù)絕對值的定義,合理去掉絕對值號,及合理轉(zhuǎn)化恒成立問題是解答本題的關(guān)鍵,著重考查分析問題和解答問題的能力,以及轉(zhuǎn)化思想的應(yīng)用.21.(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設(shè)點到平面的距離為,由,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上半年銷售工作總結(jié)匯編(28篇)
- 提升科技成果轉(zhuǎn)化效率的實施路徑
- 貴金屬催化劑行業(yè)發(fā)展趨勢與市場潛力解析
- 閥門行業(yè)發(fā)展趨勢與市場前景展望
- 2025至2030年中國網(wǎng)版印刷機(jī)行業(yè)投資前景及策略咨詢報告001
- 中高級留學(xué)生漢語歇后語教學(xué)研究
- 學(xué)科教材滲透勞動教育研究-以人教版初中語文、數(shù)學(xué)、英語三科教材為例
- Cu2WS4@泡沫鎳摩擦納米發(fā)電機(jī)的制備及其電催化降解應(yīng)用
- 歷史文化街區(qū)體驗要素、體驗品質(zhì)與游客滿意度關(guān)系研究-以海口騎樓老街為例
- 2025至2030年中國立體繡市場分析及競爭策略研究報告
- 2025年無錫南洋職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫帶答案
- 2025年河南工業(yè)和信息化職業(yè)學(xué)院單招職業(yè)技能測試題庫及答案1套
- 校長在2025春季開學(xué)思政第一課講話:用《哪吒2》如何講好思政課
- T-SSFSIDC 021-2024 認(rèn)股權(quán)綜合服務(wù)工作準(zhǔn)則
- 2024年廣東省中考數(shù)學(xué)試卷(附答案)
- 《迪拜帆船酒店》課件
- 2025年晉城職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 湖南省2025屆新高考教學(xué)教研聯(lián)盟(長郡二十校)高三第二次預(yù)熱演練數(shù)學(xué)試題
- 咨詢公司費用報銷制度及流程標(biāo)準(zhǔn)
- 2025-2030年中國乳膠醫(yī)用手套市場前景規(guī)劃及投資潛力分析報告
- (一模)烏魯木齊地區(qū)2025年高三年級第一次質(zhì)量歷史試卷(含官方答案)
評論
0/150
提交評論