




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.2.如圖,已知∠AOB=70°,OC平分∠AOB,DC∥OB,則∠C為()A.20° B.35° C.45° D.70°3.某校九年級(1)班學生畢業時,每個同學都將自己的相片向全班其他同學各送一張留作紀念,全班共送了1980張相片,如果全班有x名學生,根據題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a35.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.6.6的相反數為A.-6 B.6 C. D.7.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.8.拒絕“餐桌浪費”,刻不容緩.節約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節省斤,這些糧食可供9萬人吃一年.“”這個數據用科學記數法表示為()A. B. C. D..9.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.3210.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣111.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數的圖象與有交點,則的取值范圍是().A. B. C. D.12.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.2017年端午小長假的第一天,永州市共接待旅客約275000人次,請將275000用科學記數法表示為___________________.14.如圖,在平面直角坐標系中,點A和點C分別在y軸和x軸正半軸上,以OA、OC為邊作矩形OABC,雙曲線(>0)交AB于點E,AE︰EB=1︰3.則矩形OABC的面積是__________.15.在數學課上,老師提出如下問題:尺規作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據是_____.16.如果,那么=_____.17.在2018年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為_____.18.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結論正確的是________(只需填寫序號).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.求與之間的函數關系式;如果規定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網店店主熱心公益事業,決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.20.(6分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.21.(6分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.22.(8分)如圖,A,B,C三個糧倉的位置如圖所示,A糧倉在B糧倉北偏東26°,180千米處;C糧倉在B糧倉的正東方,A糧倉的正南方.已知A,B兩個糧倉原有存糧共450噸,根據災情需要,現從A糧倉運出該糧倉存糧的支援C糧倉,從B糧倉運出該糧倉存糧的支援C糧倉,這時A,B兩處糧倉的存糧噸數相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B兩處糧倉原有存糧各多少噸?(2)C糧倉至少需要支援200噸糧食,問此調撥計劃能滿足C糧倉的需求嗎?(3)由于氣象條件惡劣,從B處出發到C處的車隊來回都限速以每小時35公里的速度勻速行駛,而司機小王的汽車油箱的油量最多可行駛4小時,那么小王在途中是否需要加油才能安全的回到B地?請你說明理由.23.(8分)光華農機租賃公司共有50臺聯合收割機,其中甲型20臺,乙型30臺,先將這50臺聯合收割機派往A、B兩地區收割小麥,其中30臺派往A地區,20臺派往B地區.兩地區與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區18001600B地區16001200(1)設派往A地區x臺乙型聯合收割機,租賃公司這50臺聯合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.24.(10分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.25.(10分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結果保留根號和π)26.(12分)如圖,已知一次函數y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數y=ax1+bx+c的圖象交于y軸上一點B,該二次函數的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數y=ax1+bx+c的解析式;(3)設一次函數y=x+m的圖象與二次函數y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.27.(12分)如圖,要修一個育苗棚,棚的橫截面是,棚高,長,棚頂與地面的夾角為.求覆蓋在頂上的塑料薄膜需多少平方米(結果保留小數點后一位).(參考數據:,,)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,可得答案.【詳解】解:點,與點關于軸對稱的點的坐標是,
故選:C.【點睛】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;關于原點對稱的點,橫坐標與縱坐標都互為相反數.2、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故選B.3、D【解析】
根據題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據題意可列出方程.【詳解】根據題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關鍵.4、D【解析】
根據平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.5、C【解析】
設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據全等三角形對應角相等∠DAE=∠B′AE,再根據旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.6、A【解析】
根據相反數的定義進行求解.【詳解】1的相反數為:﹣1.故選A.【點睛】本題主要考查相反數的定義,熟練掌握相反數的定義是解答的關鍵,絕對值相等,符號相反的兩個數互為相反數.7、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F,G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質;3.矩形的性質.8、C【解析】
用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數法表示較大的數,一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.9、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.10、C【解析】
首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.11、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.12、C【解析】
根據題意可以求出這個正n邊形的中心角是60°,即可求出邊數.【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.75×2【解析】試題解析:175000=1.75×2.考點:科學計數法----表示較大的數14、1【解析】
根據反比例函數圖象上點的坐標特征設E點坐標為(t,),則利用AE:EB=1:3,B點坐標可表示為(4t,),然后根據矩形面積公式計算.【詳解】設E點坐標為(t,),
∵AE:EB=1:3,
∴B點坐標為(4t,),
∴矩形OABC的面積=4t?=1.
故答案是:1.【點睛】考查了反比例函數y=(k≠0)系數k的幾何意義:從反比例函數y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.15、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】
(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據線段的垂直平分線的性質定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復雜作圖、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.16、【解析】試題解析:設a=2t,b=3t,故答案為:17、3.05×105【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】305000=3.05×故答案為:3.05×10【點睛】本題考查的知識點是科學記數法—表示較大的數,解題關鍵是熟記科學計數法的表示方法.18、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質;2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】
(1)可用待定系數法來確定y與x之間的函數關系式;(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;(3)首先得出w與x的函數關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數的應用、一次函數的應用和一元二次方程的應用,利用函數增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數模型是解答本題的重點和難點.20、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數的解析式;(2)首先延長PE交x軸于點H,現將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據題意在(2)的條件下先證明△DQT≌△ECH,再根據全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數的綜合題,解題的關鍵是熟練的掌握二次函數的相關知識點.21、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.22、(1)A、B兩處糧倉原有存糧分別是270,1噸;(2)此次調撥能滿足C糧倉需求;(3)小王途中須加油才能安全回到B地.【解析】
(1)由題意可知要求A,B兩處糧倉原有存糧各多少噸需找等量關系,即A處存糧+B處存糧=450噸,A處存糧的五分之二=B處存糧的五分之三,據等量關系列方程組求解即可;(2)分別求出A處和B處支援C處的糧食,將其加起來與200噸比較即可;(3)由題意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的長,可以運用三角函數解直角三角形.【詳解】(1)設A,B兩處糧倉原有存糧x,y噸根據題意得:解得:x=270,y=1.答:A,B兩處糧倉原有存糧分別是270,1噸.(2)A糧倉支援C糧倉的糧食是×270=162(噸),B糧倉支援C糧倉的糧食是×1=72(噸),A,B兩糧倉合計共支援C糧倉糧食為162+72=234(噸).∵234>200,∴此次調撥能滿足C糧倉需求.(3)如圖,根據題意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=,∴BC=AB?sin∠BAC=1×0.44=79.2.∵此車最多可行駛4×35=140(千米)<2×79.2,∴小王途中須加油才能安全回到B地.【點睛】求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.23、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.【解析】
(1)根據題意和表格中的數據可以得到y關于x的函數關系式;
(2)根據題意可以得到相應的不等式,從而可以解答本題;
(3)根據(1)中的函數解析式和一次函數的性質可以解答本題.【詳解】解:(1)設派往A地區x臺乙型聯合收割機,則派往B地區x臺乙型聯合收割機為(30﹣x)臺,派往A、B地區的甲型聯合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數,∴x=28、29、30,∴有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.【點睛】本題考查一次函數的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數和不等式的性質解答.24、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.25、(1)證明見解析;(2);【解析】
(1)連接OD,先根據切線的性質得到∠CDO=90°,再根據平行線的性質得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據全等三角形的判定與性質得到∠CAO=∠CDO=90°,根據切線的判定即可得證;(2)因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學一年級下冊課后輔導計劃
- 初中英語教師專業發展研究計劃
- 小學數學五年級下冊課外拓展計劃
- 旅游業衛生防疫措施
- 2025年醫療機構法治建設工作計劃
- 風景園林建筑檢測實施計劃
- 城市規劃部門工作總結范文
- 網絡直播平臺開業前主播培訓計劃
- 2025年刀熔開關項目建議書
- 消費主義與生活方式-全面剖析
- 7-1-2 現金規劃案例分析
- 三菱觸摸屏GS2107-WTBD、電腦同時與FX5U通信;兩臺觸摸屏同時與PLC通信-圖文RoZ
- 情感體驗量表DESⅡ-附帶計分解釋
- “七彩教育”點亮精彩人生
- 材料清單BOM表模板
- 中小學生踐行社會主義核心價值觀主題班會
- 防火防爆、防雷防靜電94張課件
- 餐廳托盤服務-托盤的操作技能
- 塞上聽吹笛(參考課件)
- 四年級美術上冊第11課漫畫與生活課件
- 桑樹栽培技術教學課件
評論
0/150
提交評論