




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16:
IntroductiontoAsymptotics(Chapter12.1–12.3)Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AgendaTheAsymptoticPerspective(Chapter12.1)AsymptoticUnbiasedness(Chapter12.2)Consistency(Chapter12.2)ProbabilityLimits(Chapter12.2)ConsistencyofOLS(Chapter12.3)3Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Lecture16IntroductiontoAsyLecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件TheAsymptoticPerspective(cont.)Insteadoflookingatthepropertiesoftheestimatoraveragingoverallpossiblesamples,wewillstartlookingatpropertiesasthesamplesizegetsvery,verylarge.Whytheshift?Themathisgoingtobemuchmoreconvenient.Cross-samplepropertiesbecomeintractableaswerelaxthelast(andmostcrucial)Gauss–Markovassumption,thattheX
’sarefixedacrosssamples.6Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Large-sample(asymptotic)propertiesaremathematicallytractable.Wejusthavetohopethatestimatorsthatweproveworkwellwitha
near-infinitenumberofobservationswillalsoworkwellwiththefinitedatasetsweactuallyobserve.7Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)OneuseofMonteCarlotechniquesis
tostudycomputationallythesmallsamplepropertiesofestimatorsthathavebeenderivedasymptotically.Estimatorsdesignedforlargesamplesdon’ttendtoworkwellinsmallsamples,butareappropriatefor“reasonablylarge”samples.8Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Whataretheasymptoticproperties
ofinterest?Let’sstartwithsomeinformalexplanations.AsymptoticUnbiasedness:asthesamplesizegetsvery,verylarge,theestimatorbecomesunbiased(eventhoughtheremaybebiasesatsmallsamplesizes).9Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Consistency:asthesamplesizegetsvery,verylarge,theestimateisvery,verylikelytobevery,veryclosetotherightanswer.Wecanseethispropertyinouroriginal
MonteCarlosimulationsofbg1-bg3.10Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.1TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithNormallyDistributedDisturbances(1of2)11Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.1TheDistributionsFigure12.1TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithNormallyDistributedDisturbances(2of2)12Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.1TheDistributionsFigure12.1
TheDistributions
ofg1,g2,and
g3forSeveral
SampleSizeswithNormallyDistributedDisturbancesFigure12.1
TheDistributionTheAsymptoticPerspective(cont.)Consistency:asthesamplesizegetsvery,verylarge,theestimateisvery,verylikelytobevery,veryclosetotherightanswer.WecanseethispropertyinouroriginalMonteCarlosimulationsofbg1-bg3.Whatifwerepeatthesimulations,
butdrawefromaskewed,non-
Normaldistribution?14Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(1of2)15Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(2of2)16Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2
TheDistributions
ofg1,g2,andg3
forSeveralSampleSizeswithSkewed,DiscreteDisturbancesFigure12.2
TheDistributionTheAsymptoticPerspectiveTheLawofLargeNumbers:
undersuitable(andeasilyattained)conditions,thesamplemeanisaconsistentestimatorofthecorrespondingpopulationmean.18Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspectiveTheTheAsymptoticPerspective(cont.)AsymptoticNormality:asthesamplesizegrowsvery,verylarge,theestimatorfollowstheNormaldistribution(eventhoughitmayfollowadifferentdistributioninsmallersamples).19Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Aswesawinthepreviousfigures,thedistributionofbg1,bg2,andbg3appearstobeNormalevenatsmallsamplesizeswhenMoresurprisingly,thedistributionofbg1,bg2,andbg3alsoappearstobeNormalatlargersamplesizesevenwheneisdistributedquitenon-Normally.20Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(1of2)21Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(2of2)22Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2
TheDistributions
ofg1,g2,andg3
forSeveralSampleSizeswithSkewed,DiscreteDisturbancesFigure12.2
TheDistributionTheAsymptoticPerspectiveTheCentralLimitTheorem:
undersuitable(andoftenreasonable)conditions,thedistributionofasample
meantendstobeapproximatelyNormallydistributedinlargesamples.TheCentralLimitTheoremjustifiesourrelianceontheNormaldistribution(anditsoff-spring,thet,F,andChi-squareddistributions)forconstructingteststatisticswhensamplesizesarelarge.24Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspectiveTheTheAsymptoticPerspective(cont.)TheCentralLimitTheoremjustifiesourrelianceontheNormaldistribution(anditsoff-spring,thet,F,andChi-squareddistributions)forconstructingteststatisticswhensamplesizesarelarge.Werarelyknowforsurethedistributionof
,soitisre-assuringtoknowourestimatorswilltypicallybeapproximatelyNormalin
largesamples,regardlessofitssmall-
sampledistribution.25Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)KeyTermssofar:AsymptoticAsymptoticUnbiasednessConsistencyTheLawofLargeNumbersAsymptoticNormalityTheCentralLimitTheorem26Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coAsymptoticUnbiasedness(Chapter12.2)Let’slookatsomeofthesepropertiesmoreclosely,startingwithasymptoticunbiasedness.Formanybiasedestimators,thebiasshrinkssmallerandsmallerasthesamplesizegrows.Asthesamplesizegrowsinfinitelylarge,thebiasshrinkstozero.Suchestimatorsareasymptoticallyunbiased.27Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(ChaptAsymptoticUnbiasedness(cont.)Forexample,wehavelearnedthatwemustmakea“degreesoffreedom”correctiontoourestimatedstandarderrors.28Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(cont.AsymptoticUnbiasedness(cont.)Weknowthats2isanunbiasedestimateof
s2.Butwhatifweneglectedthedegreesoffreedomcorrection?29Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(cont.AsymptoticUnbiasedness(cont.)30Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(cont.AsymptoticUnbiasedness(cont.)31Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(cont.AsymptoticUnbiasedness(cont.)n30.3333100.80001000.98001,0000.998010,0000.999832Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AsymptoticUnbiasedness(cont.CheckingUnderstandingWhichofthefollowingareasymptoticallyunbiasedestimatorsofbundertheGauss–Markovassumptions?33Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstandingWhichofCheckingUnderstanding(cont.)34Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstanding(cont.)CheckingUnderstanding(cont.)35Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstanding(cont.)ConsistencyWewouldlovetobeguaranteedthatourestimatorwillbeexactlyright,oratleastvery,veryclosetoexactlyright.Certaintyistoomuchtoaskforinastochasticworld.However,ifourestimatorisconsistent,wecanbe“almostalwaysalmostright”invery,verylargesamples.36Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyWewouldlovetobeConsistency(cont.)Moreprecisely:anestimatorisconsistentif,providedwegetthesamplesizehighenough,theprobabilitycanbeascloseto1aswelikethatourestimateisasclosetobeingrightaswelike.Withfinitesamplesizes,thereisalwayssomeprobabilitythataconsistentestimatorisverywrong.Butasthesamplesizegrows,thatprobabilitybecomesvery,verysmall.37Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Consistency(cont.)MoreprecisFigure12.3TheCollapseofaConsistentEstimator’sDistributionasnGrows38Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.3TheCollapseofaConsistencyWhatdoesittaketogetconsistency?Oneoften-encounteredwayistohave
anasymptoticallyunbiasedestimatorwhosevarianceshrinkstozeroasthesample
sizegrows.Inlargesamples,theestimatoronaverage
isright.Inlargesamples,nosingleestimateislikelytobeveryfarfromtheestimator’saverage.39Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyWhatdoesittaketConsistency(cont.)Apathologicalexampleofconsistencywithoutasymptoticunbiasedness:40Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Consistency(cont.)ApathologiConsistency(cont.)41Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Consistency(cont.)41CopyrightProbabilityLimits(Chapter12.2)Howcanwedetermineifanestimatorisconsistentornot?Weneedanewmathematicaltool,theprobabilitylimit(orplim).Theplimisconceptuallymorecomplicatedthanexpectations,butinpracticeitiseasiertoworkwith.42Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(Chapter12ProbabilityLimits(cont.)Arandomvariablebconvergesinprobabilitytoaconstantvaluecif,asthesamplesizegrowsverylarge,theprobabilityapproaches1thatbtakesonavalueveryclosetoc.Wecallctheprobabilitylimitofb.plim(b)=c43Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(cont.)AraProbabilityLimits(cont.)44Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(cont.)44CoProbabilityLimits(cont.)45Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(cont.)45CoProbabilityLimits(cont.)46Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(cont.)46CoProbabilityLimits(cont.)47Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ProbabilityLimits(cont.)47CoCheckingUnderstanding48Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstanding48CopyriCheckingUnderstanding(cont.)49Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstanding(cont.)CheckingUnderstanding(cont.)50Copyright?2006PearsonAddison-Wesley.Allrightsreserved.CheckingUnderstanding(cont.)AlgebraofProbabilityLimits51Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AlgebraofProbabilityLimits5AlgebraofProbabilityLimits(cont.)52Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AlgebraofProbabilityLimitsConsistencyofOLS(Chapter12.3)Howdoweshowthatanestimator
isconsistent?Let’sstartwiththeGauss–Markovassumptions,andastraightlinethroughtheorigin.53Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(Chapter12ConsistencyofOLS(cont.)54Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)54CoConsistencyofOLS(cont.)First,notethatweknowbg4isunbiased,
soE(bg4)=b.Thus,plim(bg4)=b
iftheVar(bg4)
approaches0asngrows.Var(bg4)approaches0ifSXi2approaches
∞(ands2isfinite).55Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)FirsConsistencyofOLS(cont.)Var(bg4)approaches0ifSXi2
approaches∞(ands
2isfinite).Theseassumptionswilltypicallybemet,butwedoneedtoaugmentourGauss–Markovassumptionstoruleouttheunusualcases.56Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)Var(ConsistencyofOLS(cont.)Nowlet’saddanintercepttothemodel:57Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)NowConsistencyofOLS(cont.)Wecouldusethesamemethodweusedforbg4:showthatOLSisunbiasedandthatthevarianceshrinksto0as
ngrowslarger.Instead,we’regoingtousea
differentmethod.58Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)WecConsistencyofOLS(cont.)59Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)59CoConsistencyofOLS(cont.)60Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)60CoConsistencyofOLS(cont.)WenowneedtoaddanassumptiontotheGauss–MarkovDGP,toguaranteethatWeneedtoassumethat,asngrowslarge,61Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)WenConsistencyofOLS(cont.)62Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)62CoConsistencyofOLS(cont.)63Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)63CoConsistencyofOLS(cont.)64Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)64CoConsistencyofOLS(cont.)65Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)65CoConsistencyofOLS(cont.)66Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ConsistencyofOLS(cont.)66CoReview(cont.)Thislectureintroducesasetofnewcriteriaforjudgingestimators,basedonlarge-sample(asymptotic)properties.Insteadoflookingatthepropertiesoftheestimatoraveragingoverallpossiblesamples,welookatpropertiesasthesamplesizegetsvery,verylarge.67Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)ThislectureintReview(cont.)Whataretheasymptoticproperties
ofinterest?AsymptoticUnbiasedness:asthesamplesizegetsvery,verylarge,theestimatorbecomesunbiased(eventhoughtheremaybebiasesatsmallsamplesizes).68Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)WhataretheasyReview(cont.)Whataretheasymptoticproperties
ofinterest?Consistency:asthesamplesizegetsvery,verylarge,theestimateisvery,verylikelytobevery,veryclosetotherightanswer.69Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)WhataretheasyReview(cont.)TheLawofLargeNumbers:undersuitable(andeasilyattained)conditions,thesamplemeanisaconsistentestimatorofthecorrespondingpopulationmean.70Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)TheLawofLargeReview(cont.)Whataretheasymptoticproperties
ofinterest?AsymptoticNormality:asthesamplesizegrowsvery,verylarge,theestimatorfollowstheNormaldistribution(eventhoughitmayfollowadifferentdistributioninsmallersamples).71Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)WhataretheasyReview(cont.)TheCentralLimitTheorem:
undersuitable(andreasonablyeasytoattain)conditions,thedistributionofasamplemeantendstobeapproximatelyNormallydistributedinlargesamples.TheCentralLimitTheoremjustifiesourrelianceontheNormaldistribution(anditsoff-spring,thet,F,andChi-squareddistributions)forconstructingteststatisticswhensamplesizesarelarge.72Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)TheCentralLimiReview(cont.)KeyTermssofar:AsymptoticAsymptoticUnbiasednessConsistencyTheLawofLargeNumbersAsymptoticNormalityTheCentralLimitTheorem73Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)KeyTermssofarReview(cont.)Whatdoesittaketogetconsistency?Oneoften-encounteredwayistohave
anasymptoticallyunbiasedestimatorwhosevarianceshrinkstozeroasthesample
sizegrows.Inlargesamples,theestimatoronaverage
isright.Inlargesamples,nosingleestimateislikelytobeveryfarfromtheestimator’saverage.74Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)WhatdoesittakFigure12.3TheCollapseofaConsistentEstimator’sDistributionasnGrows75Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.3TheCollapseofaReviewHowcanwedetermineifanestimatorisconsistentornot?Weneedanewmathematicaltool,theprobabilitylimit(or
plim).76Copyright?2006PearsonAddison-Wesley.Allrightsreserved.ReviewHowcanwedetermineifReview(cont.)Arandomvariablebconvergesinprobabilitytoaconstantvaluecif,asthesamplesizegrowsverylarge,theprobabilityapproaches1thatbtakesonavalueveryclosetoc.Wecallctheprobabilitylimitofb.plim(b)=c77Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)ArandomvariablReview(cont.)78Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Review(cont.)78Copyright?20AlgebraofProbabilityLimits79Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AlgebraofProbabilityLimits7謝謝你的閱讀知識就是財富豐富你的人生謝謝你的閱讀知識就是財富謝謝!21、要知道對好事的稱頌過于夸大,也會招來人們的反感輕蔑和嫉妒。——培根
22、業精于勤,荒于嬉;行成于思,毀于隨。——韓愈
23、一切節省,歸根到底都歸結為時間的節省。——馬克思
24、意志命運往往背道而馳,決心到最后會全部推倒。——莎士比亞
25、學習是勞動,是充滿思想的勞動。——烏申斯基供婁浪頹藍辣襖駒靴鋸瀾互慌仲寫繹衰斡染圾明將呆則孰盆瘸砒腥悉漠塹脊髓灰質炎(講課2019)脊髓灰質炎(講課2019)謝謝!21、要知道對好事的稱頌過于夸大,也會招來人們的反感輕Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16IntroductiontoAsymptotics講座16介紹的漸近性Lecture16:
IntroductiontoAsymptotics(Chapter12.1–12.3)Copyright?2006PearsonAddison-Wesley.Allrightsreserved.AgendaTheAsymptoticPerspective(Chapter12.1)AsymptoticUnbiasedness(Chapter12.2)Consistency(Chapter12.2)ProbabilityLimits(Chapter12.2)ConsistencyofOLS(Chapter12.3)3Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Lecture16IntroductiontoAsyLecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件Lecture-16-Introduction-to-Asymptotics講座16介紹的漸近性共8課件TheAsymptoticPerspective(cont.)Insteadoflookingatthepropertiesoftheestimatoraveragingoverallpossiblesamples,wewillstartlookingatpropertiesasthesamplesizegetsvery,verylarge.Whytheshift?Themathisgoingtobemuchmoreconvenient.Cross-samplepropertiesbecomeintractableaswerelaxthelast(andmostcrucial)Gauss–Markovassumption,thattheX
’sarefixedacrosssamples.87Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Large-sample(asymptotic)propertiesaremathematicallytractable.Wejusthavetohopethatestimatorsthatweproveworkwellwitha
near-infinitenumberofobservationswillalsoworkwellwiththefinitedatasetsweactuallyobserve.88Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)OneuseofMonteCarlotechniquesis
tostudycomputationallythesmallsamplepropertiesofestimatorsthathavebeenderivedasymptotically.Estimatorsdesignedforlargesamplesdon’ttendtoworkwellinsmallsamples,butareappropriatefor“reasonablylarge”samples.89Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Whataretheasymptoticproperties
ofinterest?Let’sstartwithsomeinformalexplanations.AsymptoticUnbiasedness:asthesamplesizegetsvery,verylarge,theestimatorbecomesunbiased(eventhoughtheremaybebiasesatsmallsamplesizes).90Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Consistency:asthesamplesizegetsvery,verylarge,theestimateisvery,verylikelytobevery,veryclosetotherightanswer.Wecanseethispropertyinouroriginal
MonteCarlosimulationsofbg1-bg3.91Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.1TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithNormallyDistributedDisturbances(1of2)92Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.1TheDistributionsFigure12.1TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithNormallyDistributedDisturbances(2of2)93Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.1TheDistributionsFigure12.1
TheDistributions
ofg1,g2,and
g3forSeveral
SampleSizeswithNormallyDistributedDisturbancesFigure12.1
TheDistributionTheAsymptoticPerspective(cont.)Consistency:asthesamplesizegetsvery,verylarge,theestimateisvery,verylikelytobevery,veryclosetotherightanswer.WecanseethispropertyinouroriginalMonteCarlosimulationsofbg1-bg3.Whatifwerepeatthesimulations,
butdrawefromaskewed,non-
Normaldistribution?95Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(1of2)96Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(2of2)97Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2
TheDistributions
ofg1,g2,andg3
forSeveralSampleSizeswithSkewed,DiscreteDisturbancesFigure12.2
TheDistributionTheAsymptoticPerspectiveTheLawofLargeNumbers:
undersuitable(andeasilyattained)conditions,thesamplemeanisaconsistentestimatorofthecorrespondingpopulationmean.99Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspectiveTheTheAsymptoticPerspective(cont.)AsymptoticNormality:asthesamplesizegrowsvery,verylarge,theestimatorfollowstheNormaldistribution(eventhoughitmayfollowadifferentdistributioninsmallersamples).100Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)Aswesawinthepreviousfigures,thedistributionofbg1,bg2,andbg3appearstobeNormalevenatsmallsamplesizeswhenMoresurprisingly,thedistributionofbg1,bg2,andbg3alsoappearstobeNormalatlargersamplesizesevenwheneisdistributedquitenon-Normally.101Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(1of2)102Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2TheDistributionsofg1,g2,
andg3forSeveralSampleSizeswithSkewed,DiscreteDisturbances(2of2)103Copyright?2006PearsonAddison-Wesley.Allrightsreserved.Figure12.2TheDistributionsFigure12.2
TheDistributions
ofg1,g2,andg3
forSeveralSampleSizeswithSkewed,DiscreteDisturbancesFigure12.2
TheDistributionTheAsymptoticPerspectiveTheCentralLimitTheorem:
undersuitable(andoftenreasonable)conditions,thedistributionofasample
meantendstobeapproximatelyNormallydistributedinlargesamples.TheCentralLimitTheoremjustifiesourrelianceontheNormaldistribution(anditsoff-spring,thet,F,andChi-squareddistributions)forconstructingteststatisticswhensamplesizesarelarge.105Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspectiveTheTheAsymptoticPerspective(cont.)TheCentralLimitTheoremjustifiesourrelianceontheNormaldistribution(anditsoff-spring,thet,F,andChi-squareddistributions)forconstructingteststatisticswhensamplesizesarelarge.Werarelyknowforsurethedistributionof
,soitisre-assuringtoknowourestimatorswilltypicallybeapproximatelyNormalin
largesamples,regardlessofitssmall-
sampledistribution.106Copyright?2006PearsonAddison-Wesley.Allrightsreserved.TheAsymptoticPerspective(coTheAsymptoticPerspective(cont.)KeyTermssofar:AsymptoticAsymptoticUnbiasednessConsistencyTheLawofLargeNumbersAsymptoticNormalityTheCentralLimitTh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 塑料品購買合同協議
- 四人合資協議合同協議
- 土方填運合同協議
- 外派船員派遣合同協議
- 外包協議書范本合同協議
- 外發修圖合同協議
- 土方開挖勞務合同協議
- 土石方居間合同協議
- 商鋪托管經營合同協議
- 塑料跑道維修協議合同
- DB13-T 5821-2023 預拌流態固化土回填技術規程
- 訴前調解申請書
- DB33T 809-2010 農村水電站運行管理技術規程
- 民航貴州監管局制員工招聘筆試真題2023
- 2022版義務教育(歷史)課程標準(附課標解讀)
- 天津市保溫裝飾板外墻外保溫系統技術規程
- 《 大學生軍事理論教程》全套教學課件
- CJT 526-2018 軟土固化劑 標準
- 品質提升計劃改善報告課件
- NB-T10208-2019陸上風電場工程施工安全技術規范
- 《跟上兔子》繪本五年級第1季A-Magic-Card
評論
0/150
提交評論