(塑性加工模擬及自動控制)SimulationsMaterials1課件_第1頁
(塑性加工模擬及自動控制)SimulationsMaterials1課件_第2頁
(塑性加工模擬及自動控制)SimulationsMaterials1課件_第3頁
(塑性加工模擬及自動控制)SimulationsMaterials1課件_第4頁
(塑性加工模擬及自動控制)SimulationsMaterials1課件_第5頁
已閱讀5頁,還剩83頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Simulationsofplasticprocessing:

elasto-plasticdeformationPart1:tensorsandcontinummechanicsTeacher:法法

QQ號:2306847727,office423-2A區SimulationsofplasticprocessIntroductionInthisclass,westudymaterialsatamacroscopicscale(宏觀尺度):betweendislocation(位錯)andsample(樣品)Weusemathematics,mechanics,materialspropertiesHongguanchiduIntroductionInthisclass,wePlan(2weeks,6classes)Part1:tensorsandcontinuummechanics 張量和連續介質力學Part2:elasticdeformation

彈性變形Part3:plasticdeformation 塑性變形ZhanglianghelianxvjiezhilixueSuxingbianxingtanxingbianxingPlan(2weeks,6classes)PartContentMaterialelement

材料單元Stresstensor

應力張量Straintensor

應變張量Yinglizhangliang

ContentMaterialelement材料單元YSeveralyearsago,youhavelearnNewtonianmechanic:thesolidswereundeformable,andsometimemodeledasmaterialpoint.Inmaterialscience,westudythemechanicalbehavior(力學行為)insideadeformablebodyofmaterialbodyofmaterial=sample,beam,mechanicpiece,bridge…MaterialelementLixuexingweiSeveralyearsago,youhaveleMaterialelementThematerialisacontinuum(連續體)i.e.thematteriscontinuouslydistributedinthebody(novoid,nocracks(無空位,無裂紋)Sothebodycanbesub-dividedintoinfinitesimalelements(無窮小的單位元)WukongweiWuliewenWuqiongxiaodedanweiyuanlianxvtiMaterialelementThematerialiMaterialelementThebodyofmaterialisdividedintomaterialelementsThesematerialelementsarealsocalledinfinitesimalelements(forderivation?/?x)orrepresentativevolumeelementsEachmaterialelementcanhavedifferentproperties(性能)andmechanicalresponse(stress,strain…)MaterialelementThebodyofmaMaterialelementMaterial=body=solidcutthematerialwithavirtualplane(虛擬的平面)Materialelement(1faceisintheplane)X0YZBasisxvniHowtodefine1element:MaterialelementMaterial=body=MaterialelementWewanttostudyin3dimensions,souse3planesdefinedwiththebasis:X0YZBasisPlanenormaltoYPlanenormaltoZPlanenormaltoXMaterialelementWewanttostuMaterialelementdxX0YZdydzWestudythebehaviorof1elementofthematerial,ofdimension1×1×1.elementsizehasnounit,butthesizeoftheelementmuchbiggerthantheatoms(原子),tobeacontinuum.Thesizedependonwhatwewanttostudy,ofwhataccuracyweneed.YuanziMaterialelementdxX0YZdydzWesMaterialelementInmechanic,thematerialelementcontainmanygrainsIncrystalplasticity(晶體的塑性),thematerialelementissmallerthanagrainIncontinuousmaterials,theforcesarerelatedtothebody’sdeformationthroughconstitutiveequations(本構方程)Theinternalforcesarecontinuousandthematerialdisplacementisaderivablefunction(可導的函數)JingtidesuxingBengoufangchengKedaodehanshuMaterialelementInmechanic,tStresstensorWesawthatthebodyofmaterialcanbesubdividedintomaterialelementsWewanttostudywhathappentothebodyofmaterialwhensomeforcesareappliedtothebodySowemuststudywhathappentoeachelementofthematerialWestudyhowtheforcesaretransmittedtotheelementsStresstensorWesawthatthebStresstensorHypothesisonappliedforces:Thesolidisinequilibrium(donotmove)SomeforcesPareappliedonthesolidEquilibriumofforcesandmomentofforces/Torques(應力與動量平衡)P1P2P4P3P1+P2+P3+P4=0Equilibriuminrotation:M1+M2+M3+M4=0(Mi=Pi^OA,PiappliedonA)X0YZYingliyudongliangpinghengStresstensorHypothesisonappStresstensorOriginofthestresstensor:solidandinternalstressWecutthesolid(bodyofmaterial)alongaplaneP1P2P4P3X0YZVirtualplanetocutthematerialVirtualsurfaceinsidethematerialStresstensorOriginofthestrStresstensorFristheforceappliedontheleftpartbytherightpartExternalforcescanbeappliedonpoints,surfaces,orvolume;butinternalforcesaresurfaceforces.TheforcesFrandFlareequivalentonthe2sidesofthesolidP1P2P4P3FlrlFrStresstensorFristheforceaStresstensorTheforceFr=-(P1+P2)isdiscomposedintoanormalcomponentFn(垂直分量)andashearcomponentFt(剪切分量)intheplane(tangentialforce)Incompression,thenormalforceFnisnegativeFrl-FrlP1P2FnFtChuizhifenliangJianqiefenliangStresstensorTheforceFr=-(P1StresstensorOnthesurfacedSoftheelement,wehavetheforceperunitsurfaceσr=stress(應力)TheforceontherightfaceoftheelementdS=dz×dyis:∫S

σr×dS=∫y∫zσr×dy×dz=-Fr-FrlFnFtσrσnσtσlX0YZdSStresstensorOnthesurfacedSStresstensorIftheinternalforceishomogeneous(均勻的)onthesurfaceS,F=S×σUsuallythestressdistributioninthematerialisnothomogeneousForcomplexcases,wemayuseFiniteElementsprograms(有限元軟件)tosolvetheconstitutiveequations(forexampletheHookelaw)andcomputethestress(andstrain)inalltheelements.JunyunYouxianyuanruanjianStresstensorIftheinternalfStresstensorWeapplythevirtualcutanalysisonthe3facesofthematerialelement:weget3vectorof stress=force/surfaceσrσtσfStresstensorWeapplythevirtStresstensorWediscomposeσt,σr,andσf,into3componentinthebasis:weget9componentsforthestresses.σyzσzzσzyσxzσxyσxxσzxσyyσyx0XZYσrσtσfStresstensorWediscomposeσt,StresstensorNormalstresses(正應力)σii,i=x,y,zShearstresses

(剪切應力)σij,i,j=x,y,z,i≠jσxyisthestresscomponentinthedirectionxontheplaneofnormaly.σyzσzzσzyσxzσxyσxxσzxσyyσyx0XZYStresstensorNormalstresses(StresstensorThestresstensorisusedtocomputetheforceFonafaceofnormaln(andsurfaceS=1):F(n)=σ×n=×SoistheforceonthefacenormaltoX:σr=-Frσxx

σxy

σxz

σyx

σyy

σyz

σzx

σzy

σzznxnynzσxx

σyx

σzxStresstensorThestresstensorσzyσxyσyyStresstensorTheStresstensoronamaterialelementdependonthepositionσ=σ(x,y,z)isafunctionofthepositionx,y,zoftheelementStressesonfacesY:0XZYσzy+?σzy/?y*dyσxy+?σxy/?y*dyσyy+?σyy/?y*dyσzyσxyσyyStresstensorTheStreStresstensorStressesonfacesXandZIncontinuummechanics,thestressesarecontinuous.FiniteElementmethodsuseequilibriumprinciplestocomputeheterogeneous(不均勻的)stressesanddeformationsσzx+?σzx/?x*dxσxx+?σxx/?x*dxσyx+?σyx/?x*dxσzz+?σzz/?z*dzσxz+?σxz/?z*dzσyz+?σyz/?z*dz0XZYStresstensorStressesonfacesStresstensorThestressesthroughthematerialelementmustbeinequilibrium:Equilibriuminforces: div(σ)=0Equilibriuminmomentofforces(rotation):

σ=σT

thetensorissymmetric(σij=σji)?σxx/?x+?σxy/?y+?σxz/?z=0?σyx/?x+?σyy/?y+?σyz/?z=0?σzx/?x+?σzy/?y+?σzz/?z=0StresstensorThestressesthroStresstensorWhateveristhestresstensor,thereisabasisinwhichthereisnoshear:

=>Inthisbasis,thestressarecalled‘Principalstresses’0XZY0e1e3e2σI000σII000σIIIσxx

σxy

σxz

σyx

σyy

σyz

σzx

σzy

σzzStresstensorWhateveristhesStresstensorChangeofbasis(=referential,coordinatesystem):simpleshear=planestress0XZY0e1e3Y=e2σzx=10MPaσxz=10MPaσ11=10MPaσ33=-10MPaσXYZ=00100001000σ123=100000000-10StresstensorChangeofbasis(Demonstration:ExpressamatrixintoanotherbasisTransformationMatrixfrom(XYZ)to(e1e2e3):T= (expresseiinsideXYZ)σ123=T-1σxyzT1/√2 0 -1/√20 1 01/√2 0 1/√2Demonstration:ExpressamatriStresstensorPressurep(球應力): p=Stressdeviatortensor(應力偏張量)s:s=σ–pId=Deviatoricofσ=>s11+s22+s33=0Thestressdeviatortensorisusefulbecausepressuredonotproduceplasticdeformationσxx+σyy+σzz3σxx-pσxy

σxz

σyx

σyy-pσyz

σzx

σzy

σzz-pyinglipianzhangliangQiuyingliStresstensorPressurep(球應力)StresstensorEquivalentvonMisesstress(等效應力)σ=σVM=√3/2(sxx2+syy2+szz2+2×sxy2+2×sxz2+2×syz2)AlsocalledEquivalenttensilestress

becauseinuniaxialtensionp=σxx/3:

σVM=√3/2(σxx-p)2+p2+p2)=√3/2(4/9+1/9+1/9)σxx =σxxUsetocomparedifferentstressstates(應力狀態)UsewiththevonMisesequivalentstrain:εVM=√2/3(εxx2+εyy2+εzz2+2×εxy2+2×εxz2+2×εyz2)DengxiaoyingliYinglizhuangtaiStresstensorEquivalentvonMiStresstensorVonMisesstressinplanestresses(平面應力)p=(σx+σy)/3σ=σVM=√3/2((σx-p)2+(σy-p)2-p2)=√σx2+σy2-σxσyDrawσVM=constantσxσxσyσyσxσyσVM=σx=σyσx=-σy=σVM/√3StresstensorVonMisesstressStresstensorVonMisesstressinprincipalstressbasis(i.e.ifi≠j,σij=0)TheconstantvonMisesstressisacylinder(圓柱體)tiltedat45oofftheaxisσyσxσz(111)YuanzhutiStresstensorVonMisesstressStresstensorComputeσαandταasafunctionofα

Mohrcircleinplanestressταismaximumforα=45oσxxσyyσαταταα2ασxxσyyσασα=σxsin2α+σycos2ατα=σysinαcosα-σxcosαsinαStresstensorComputeσαandταchangeofbasisforMohrcircleT= σxyz=σ123=T-1σxyzT=sinα -cosα 0cosα sinα 00 0 1σx 0 00 σy 00 0 0

σxsin2α+σycos2α σysinαcosα-σxcosαsinα 0 σysinαcosα-σxcosαsinα σxcos2α+σysin2α 00 0 0changeofbasisforMohrcirclStraintensorWesawthebodyofmaterialsandthematerialelementsaresubmittedtoforces.Inmaterialscience,asinthereallife,thematerialscandeformWeneedtomeasureandquantifythesedeformationsUsuallythesedeformationsareverysmall…StraintensorWesawthebodyoStraintensorOriginofthestraintensor:thedisplacementofmaterialDisplacementfield(位移場)u(x,y,z)foreachpointX(x,y,z)ofthematerialu=eyezbeforeafteru(x,y,z)0X(x,y,z)exuxuyuzWeiyichangStraintensorOriginofthestrStraintensorDisplacementgradienttensor(位移梯度張量)

G=grad(u)=Thesymmetric(對稱的)partofGis

ε=1/2(G+GT)εisthestraintensor(ordeformationtensor)Theanti-symmetric(非對稱的)partofGisω=1/2(G-GT)ωistherotationtensor(orspintensor)?ux/?x?ux/?y?ux/?z?uy/?x?uy/?y?uy/?z?uz/?x?uz/?y?uz/?zWeiyitiduzhangliangFeiduichengdeStraintensorDisplacementgradStraintensorε=?ux1?ux?uy1?ux?uz

?x2?y?x2?z?x1?uy?ux?uy1?uy?uz

2?x?y?y2?z?y1?uz?ux1?uz?uy?uz2?x?z2?y?z?z

(+)

(+)(+)

(+)(+)

(+)Straintensor?uxStraintensorPrincipalstrain:asthestraintensorissymmetric,thereisacoordinatesystem(basis,坐標系)wherei≠j=>εij=0Inthisbasisεxx,εyyandεzzarecalltheprincipalstrain(eigenvaluesofthematrix,特征值)

=YXe1e2ZuobiaoxiTezhengzhiStraintensorPrincipalstrain:StraintensorExamplesofstraintensor:Pureshearu=ux=α×y G=ε=Planestraintensionu=

ε=0α/20α/200000-ε000ε0000YXε×(x-a)ε×(y-b)0e2e1(a,b,0)sin(α)≈tan(α)≈α(inradian)0α0000000StraintensorExamplesofstraiStrainalongtheelongationdirection‘y’forhomogeneousdeformation:uy=(lf-l0)/l0×yGyy==(lf-l0)/l0=εyyStraintensoryxl0lf?uy?yStrainalongtheelongationdiTotalstrainalongauniformelongationpath:Currentlengthlatt,l+dlatt+dtε=dl/listheelongationduringdtεtotal=∫lilfdl/l=[ln(l)]lilf=ln(lf)-ln(li)=ln()StraintensorlflillilfTotalstrainalongauniformeStraintensorChangeofvolume(2D):V=dx×dy×dzdV=[(dx+εxxdx)(dy+εyydy)dz-dxdydz]/dxdydz ≈εxx+εyy(weneglectεxx×εyy)dxdyεxxdxεyydyεxx×dy×dzεxx×dy×dzStraintensorChangeofvolumeStraintensorUniformdeformation(均勻變形):thestraintensorisconstantthroughthematerial(donotdependon(x,y,z))εisthesumoftheelasticandplasticstrainInplasticdeformation,thevolume

isconstant(體積不變),soεxx+εyy+εzz=0Sheardoesnotproduceanychangeofvolume.StraintensorUniformdeformatiSimulationsofplasticprocessing:

elasto-plasticdeformationPart1:tensorsandcontinummechanicsTeacher:法法

QQ號:2306847727,office423-2A區SimulationsofplasticprocessIntroductionInthisclass,westudymaterialsatamacroscopicscale(宏觀尺度):betweendislocation(位錯)andsample(樣品)Weusemathematics,mechanics,materialspropertiesHongguanchiduIntroductionInthisclass,wePlan(2weeks,6classes)Part1:tensorsandcontinuummechanics 張量和連續介質力學Part2:elasticdeformation

彈性變形Part3:plasticdeformation 塑性變形ZhanglianghelianxvjiezhilixueSuxingbianxingtanxingbianxingPlan(2weeks,6classes)PartContentMaterialelement

材料單元Stresstensor

應力張量Straintensor

應變張量Yinglizhangliang

ContentMaterialelement材料單元YSeveralyearsago,youhavelearnNewtonianmechanic:thesolidswereundeformable,andsometimemodeledasmaterialpoint.Inmaterialscience,westudythemechanicalbehavior(力學行為)insideadeformablebodyofmaterialbodyofmaterial=sample,beam,mechanicpiece,bridge…MaterialelementLixuexingweiSeveralyearsago,youhaveleMaterialelementThematerialisacontinuum(連續體)i.e.thematteriscontinuouslydistributedinthebody(novoid,nocracks(無空位,無裂紋)Sothebodycanbesub-dividedintoinfinitesimalelements(無窮小的單位元)WukongweiWuliewenWuqiongxiaodedanweiyuanlianxvtiMaterialelementThematerialiMaterialelementThebodyofmaterialisdividedintomaterialelementsThesematerialelementsarealsocalledinfinitesimalelements(forderivation?/?x)orrepresentativevolumeelementsEachmaterialelementcanhavedifferentproperties(性能)andmechanicalresponse(stress,strain…)MaterialelementThebodyofmaMaterialelementMaterial=body=solidcutthematerialwithavirtualplane(虛擬的平面)Materialelement(1faceisintheplane)X0YZBasisxvniHowtodefine1element:MaterialelementMaterial=body=MaterialelementWewanttostudyin3dimensions,souse3planesdefinedwiththebasis:X0YZBasisPlanenormaltoYPlanenormaltoZPlanenormaltoXMaterialelementWewanttostuMaterialelementdxX0YZdydzWestudythebehaviorof1elementofthematerial,ofdimension1×1×1.elementsizehasnounit,butthesizeoftheelementmuchbiggerthantheatoms(原子),tobeacontinuum.Thesizedependonwhatwewanttostudy,ofwhataccuracyweneed.YuanziMaterialelementdxX0YZdydzWesMaterialelementInmechanic,thematerialelementcontainmanygrainsIncrystalplasticity(晶體的塑性),thematerialelementissmallerthanagrainIncontinuousmaterials,theforcesarerelatedtothebody’sdeformationthroughconstitutiveequations(本構方程)Theinternalforcesarecontinuousandthematerialdisplacementisaderivablefunction(可導的函數)JingtidesuxingBengoufangchengKedaodehanshuMaterialelementInmechanic,tStresstensorWesawthatthebodyofmaterialcanbesubdividedintomaterialelementsWewanttostudywhathappentothebodyofmaterialwhensomeforcesareappliedtothebodySowemuststudywhathappentoeachelementofthematerialWestudyhowtheforcesaretransmittedtotheelementsStresstensorWesawthatthebStresstensorHypothesisonappliedforces:Thesolidisinequilibrium(donotmove)SomeforcesPareappliedonthesolidEquilibriumofforcesandmomentofforces/Torques(應力與動量平衡)P1P2P4P3P1+P2+P3+P4=0Equilibriuminrotation:M1+M2+M3+M4=0(Mi=Pi^OA,PiappliedonA)X0YZYingliyudongliangpinghengStresstensorHypothesisonappStresstensorOriginofthestresstensor:solidandinternalstressWecutthesolid(bodyofmaterial)alongaplaneP1P2P4P3X0YZVirtualplanetocutthematerialVirtualsurfaceinsidethematerialStresstensorOriginofthestrStresstensorFristheforceappliedontheleftpartbytherightpartExternalforcescanbeappliedonpoints,surfaces,orvolume;butinternalforcesaresurfaceforces.TheforcesFrandFlareequivalentonthe2sidesofthesolidP1P2P4P3FlrlFrStresstensorFristheforceaStresstensorTheforceFr=-(P1+P2)isdiscomposedintoanormalcomponentFn(垂直分量)andashearcomponentFt(剪切分量)intheplane(tangentialforce)Incompression,thenormalforceFnisnegativeFrl-FrlP1P2FnFtChuizhifenliangJianqiefenliangStresstensorTheforceFr=-(P1StresstensorOnthesurfacedSoftheelement,wehavetheforceperunitsurfaceσr=stress(應力)TheforceontherightfaceoftheelementdS=dz×dyis:∫S

σr×dS=∫y∫zσr×dy×dz=-Fr-FrlFnFtσrσnσtσlX0YZdSStresstensorOnthesurfacedSStresstensorIftheinternalforceishomogeneous(均勻的)onthesurfaceS,F=S×σUsuallythestressdistributioninthematerialisnothomogeneousForcomplexcases,wemayuseFiniteElementsprograms(有限元軟件)tosolvetheconstitutiveequations(forexampletheHookelaw)andcomputethestress(andstrain)inalltheelements.JunyunYouxianyuanruanjianStresstensorIftheinternalfStresstensorWeapplythevirtualcutanalysisonthe3facesofthematerialelement:weget3vectorof stress=force/surfaceσrσtσfStresstensorWeapplythevirtStresstensorWediscomposeσt,σr,andσf,into3componentinthebasis:weget9componentsforthestresses.σyzσzzσzyσxzσxyσxxσzxσyyσyx0XZYσrσtσfStresstensorWediscomposeσt,StresstensorNormalstresses(正應力)σii,i=x,y,zShearstresses

(剪切應力)σij,i,j=x,y,z,i≠jσxyisthestresscomponentinthedirectionxontheplaneofnormaly.σyzσzzσzyσxzσxyσxxσzxσyyσyx0XZYStresstensorNormalstresses(StresstensorThestresstensorisusedtocomputetheforceFonafaceofnormaln(andsurfaceS=1):F(n)=σ×n=×SoistheforceonthefacenormaltoX:σr=-Frσxx

σxy

σxz

σyx

σyy

σyz

σzx

σzy

σzznxnynzσxx

σyx

σzxStresstensorThestresstensorσzyσxyσyyStresstensorTheStresstensoronamaterialelementdependonthepositionσ=σ(x,y,z)isafunctionofthepositionx,y,zoftheelementStressesonfacesY:0XZYσzy+?σzy/?y*dyσxy+?σxy/?y*dyσyy+?σyy/?y*dyσzyσxyσyyStresstensorTheStreStresstensorStressesonfacesXandZIncontinuummechanics,thestressesarecontinuous.FiniteElementmethodsuseequilibriumprinciplestocomputeheterogeneous(不均勻的)stressesanddeformationsσzx+?σzx/?x*dxσxx+?σxx/?x*dxσyx+?σyx/?x*dxσzz+?σzz/?z*dzσxz+?σxz/?z*dzσyz+?σyz/?z*dz0XZYStresstensorStressesonfacesStresstensorThestressesthroughthematerialelementmustbeinequilibrium:Equilibriuminforces: div(σ)=0Equilibriuminmomentofforces(rotation):

σ=σT

thetensorissymmetric(σij=σji)?σxx/?x+?σxy/?y+?σxz/?z=0?σyx/?x+?σyy/?y+?σyz/?z=0?σzx/?x+?σzy/?y+?σzz/?z=0StresstensorThestressesthroStresstensorWhateveristhestresstensor,thereisabasisinwhichthereisnoshear:

=>Inthisbasis,thestressarecalled‘Principalstresses’0XZY0e1e3e2σI000σII000σIIIσxx

σxy

σxz

σyx

σyy

σyz

σzx

σzy

σzzStresstensorWhateveristhesStresstensorChangeofbasis(=referential,coordinatesystem):simpleshear=planestress0XZY0e1e3Y=e2σzx=10MPaσxz=10MPaσ11=10MPaσ33=-10MPaσXYZ=00100001000σ123=100000000-10StresstensorChangeofbasis(Demonstration:ExpressamatrixintoanotherbasisTransformationMatrixfrom(XYZ)to(e1e2e3):T= (expresseiinsideXYZ)σ123=T-1σxyzT1/√2 0 -1/√20 1 01/√2 0 1/√2Demonstration:ExpressamatriStresstensorPressurep(球應力): p=Stressdeviatortensor(應力偏張量)s:s=σ–pId=Deviatoricofσ=>s11+s22+s33=0Thestressdeviatortensorisusefulbecausepressuredonotproduceplasticdeformationσxx+σyy+σzz3σxx-pσxy

σxz

σyx

σyy-pσyz

σzx

σzy

σzz-pyinglipianzhangliangQiuyingliStresstensorPressurep(球應力)StresstensorEquivalentvonMisesstress(等效應力)σ=σVM=√3/2(sxx2+syy2+szz2+2×sxy2+2×sxz2+2×syz2)AlsocalledEquivalenttensilestress

becauseinuniaxialtensionp=σxx/3:

σVM=√3/2(σxx-p)2+p2+p2)=√3/2(4/9+1/9+1/9)σxx =σxxUsetocomparedifferentstressstates(應力狀態)UsewiththevonMisesequivalentstrain:εVM=√2/3(εxx2+εyy2+εzz2+2×εxy2+2×εxz2+2×εyz2)DengxiaoyingliYinglizhuangtaiStresstensorEquivalentvonMiStresstensorVonMisesstressinplanestresses(平面應力)p=(σx+σy)/3σ=σVM=√3/2((σx-p)2+(σy-p)2-p2)=√σx2+σy2-σxσyDrawσVM=constantσxσxσyσyσxσyσVM=σx=σyσx=-σy=σVM/√3StresstensorVonMisesstressStresstensorVonMisesstressinprincipalstressbasis(i.e.ifi≠j,σij=0)TheconstantvonMisesstressisacylinder(圓柱體)tiltedat45oofftheaxisσyσxσz(111)YuanzhutiStresstensorVonMisesstressStresstensorComputeσαandταasafunctionofα

Mohrcircleinplanestressταismaximumforα=45oσxxσyyσαταταα2ασxxσyyσασα=σxsin2α+σycos2ατα=σysinαcosα-σxcosαsinαStresstensorComputeσαandταchangeofbasisforMohrcircleT= σxyz=σ123=T-1σxyzT=sinα -cosα 0cosα sinα 00 0 1σx 0 00 σy 00 0 0

σxsin2α+σycos2α σysinαcosα-σxcosαsinα 0 σysinαcosα-σxcosαsinα σxcos2α+σysin2α 00 0 0changeofbasisforMohrcirclStraintensorWesawthebodyofmaterialsandthematerialelementsaresubmittedtoforces.Inmaterialscience,asinthereallife,thematerialscandeformWeneedtomeasureandquantifythesedeformationsUsuallythesedeformationsareverysmall…StraintensorWesawthebodyoStraintensorOriginofthestraintensor:thedisplacementofmaterialDisplacementfield(位移場)u(x,y,z)foreachpointX(x,y,z)ofthematerialu=eyezbeforeafteru(x,y,z)0X(x,y,z)exuxuyuzWeiyichangStraintensorOriginofthestrStraintensorDisplacementgradienttensor(位移梯度張量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論