




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的展開式中的系數為150,則()A.20 B.15 C.10 D.252.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.603.某部隊在一次軍演中要先后執行六項不同的任務,要求是:任務A必須排在前三項執行,且執行任務A之后需立即執行任務E,任務B、任務C不能相鄰,則不同的執行方案共有()A.36種 B.44種 C.48種 D.54種4.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.5.集合中含有的元素個數為()A.4 B.6 C.8 D.126.已知函數,將函數的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.7.執行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.8.函數在上的圖象大致為()A. B. C. D.9.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且10.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.11.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.12.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數學家狄里克雷對數論,數學分析和數學物理有突出貢獻,是解析數論的創始人之一.函數,稱為狄里克雷函數.則關于有以下結論:①的值域為;②;③;④其中正確的結論是_______(寫出所有正確的結論的序號)14.設、滿足約束條件,若的最小值是,則的值為__________.15.已知函數,則________;滿足的的取值范圍為________.16.已知的展開式中含有的項的系數是,則展開式中各項系數和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.19.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數的取值范圍22.(10分)已知曲線:和:(為參數).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數問題,意在考查學生對這些知識的理解掌握水平.2.D【解析】
先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.3.B【解析】
分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.4.D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.5.B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B6.A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解。【詳解】函數可化為:,將函數的圖象向左平移個單位長度后,得到函數的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數圖象的平移、性質等知識,考查轉化能力,屬于中檔題。7.B【解析】
由題意,框圖的作用是求分段函數的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.8.C【解析】
根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.9.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.10.D【解析】
根據已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.11.B【解析】
因為將函數(,)的圖象向右平移個單位長度后得到函數的圖象,可得,結合已知,即可求得答案.【詳解】將函數(,)的圖象向右平移個單位長度后得到函數的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數圖象平移和根據圖象對稱求參數,解題關鍵是掌握三角函數圖象平移的解法和正弦函數圖象的特征,考查了分析能力和計算能力,屬于基礎題.12.C【解析】
因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.②【解析】
根據新定義,結合實數的性質即可判斷①②③,由定義求得比小的有理數個數,即可確定④.【詳解】對于①,由定義可知,當為有理數時;當為無理數時,則值域為,所以①錯誤;對于②,因為有理數的相反數還是有理數,無理數的相反數還是無理數,所以滿足,所以②正確;對于③,因為,當為無理數時,可以是有理數,也可以是無理數,所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.14.【解析】
畫出滿足條件的平面區域,求出交點的坐標,由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,則點.由得,顯然當直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,是一道中檔題.15.【解析】
首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.16.1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數是,解得,令得:展開式中各項系數和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】
(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)將直線的參數方程代入圓的直角坐標方程,利用一元二次方程根和系數關系式即可求解.【詳解】(1)直線l的參數方程為(t為參數),轉換為直角坐標方程為x+y﹣3=0.圓C的極坐標方程為ρ2﹣4ρcosθ=3,轉換為直角坐標方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數方程為(t為參數),代入圓的直角坐標方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點睛】本題考查參數方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.18.(Ⅰ),;(Ⅱ).【解析】
(Ⅰ)由(為參數)直接消去參數,可得直線的普通方程,把兩邊同時乘以,結合,可得曲線的直角坐標方程;(Ⅱ)把代入,化為關于的一元二次方程,利用根與系數的關系及參數的幾何意義求解.【詳解】解:(Ⅰ)由(為參數),消去參數,可得.∵,∴,即.∴曲線的直角坐標方程為;(Ⅱ)把代入,得.設,兩點對應的參數分別為,則,.不妨設,,∴.【點睛】本題考查簡單曲線的極坐標方程,考查參數方程化普通方程,明確直線參數方程中參數的幾何意義是解題的關鍵,是中檔題.19.(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結論,結合正弦定理和同角三角函數的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.20.(1)見解析;(2)【解析】
(1)記,連結,推導出,平面,由此能證明平面平面;(2)推導出,平面,連結,由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結,由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點睛】本題考查面面垂直的證明,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論