(新高考數(shù)學)高考一輪復(fù)習核心考點講與練考點07《 三角函數(shù)的圖像與性質(zhì)》解析版_第1頁
(新高考數(shù)學)高考一輪復(fù)習核心考點講與練考點07《 三角函數(shù)的圖像與性質(zhì)》解析版_第2頁
(新高考數(shù)學)高考一輪復(fù)習核心考點講與練考點07《 三角函數(shù)的圖像與性質(zhì)》解析版_第3頁
(新高考數(shù)學)高考一輪復(fù)習核心考點講與練考點07《 三角函數(shù)的圖像與性質(zhì)》解析版_第4頁
(新高考數(shù)學)高考一輪復(fù)習核心考點講與練考點07《 三角函數(shù)的圖像與性質(zhì)》解析版_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

考點07三角函數(shù)的圖像與性質(zhì)(核心考點講與練)一、1.同角三角函數(shù)的基本關(guān)系(1)平方關(guān)系:sin2α+cos2α=1.(2)商數(shù)關(guān)系:eq\f(sinα,cosα)=tan__α.2.三角函數(shù)的誘導公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-αeq\f(π,2)-αeq\f(π,2)+α正弦sinα-sin__α-sin__αsin__αcos__αcos__α余弦cosα-cos__αcos__α-cos__αsin__α-sin__α正切tanαtan__α-tan__α-tan__α口訣函數(shù)名不變,符號看象限函數(shù)名改變,符號看象限三角函數(shù)的圖象與性質(zhì)1.用五點法作正弦函數(shù)和余弦函數(shù)的簡圖(1)正弦函數(shù)y=sinx,x∈[0,2π]的圖象中,五個關(guān)鍵點是:(0,0),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),1)),(π,0),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2),-1)),(2π,0).(2)余弦函數(shù)y=cosx,x∈[0,2π]的圖象中,五個關(guān)鍵點是:(0,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),0)),(π,-1),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2),0)),(2π,1).2.正弦、余弦、正切函數(shù)的圖象與性質(zhì)(下表中k∈Z)函數(shù)y=sinxy=cosxy=tanx圖象定義域RR{xeq\b\lc\|(\a\vs4\al\co1(x∈R,且))x≠kπ+eq\f(π,2)}值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函數(shù)偶函數(shù)奇函數(shù)遞增區(qū)間eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ-\f(π,2),2kπ+\f(π,2)))[2kπ-π,2kπ]eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ-\f(π,2),kπ+\f(π,2)))遞減區(qū)間eq\b\lc\[\rc\](\a\vs4\al\co1(2kπ+\f(π,2),2kπ+\f(3π,2)))[2kπ,2kπ+π]無對稱中心(kπ,0)eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ+\f(π,2),0))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2),0))對稱軸方程x=kπ+eq\f(π,2)x=kπ無1.用五點法畫y=Asin(ωx+φ)一個周期內(nèi)的簡圖時,要找五個關(guān)鍵點,如下表所示.x-eq\f(φ,ω)-eq\f(φ,ω)+eq\f(π,2ω)eq\f(π-φ,ω)eq\f(3π,2ω)-eq\f(φ,ω)eq\f(2π-φ,ω)ωx+φ0eq\f(π,2)πeq\f(3π,2)2πy=Asin(ωx+φ)0A0-A02.函數(shù)y=Asin(ωx+φ)的有關(guān)概念y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一個振動量時振幅周期頻率相位初相AT=eq\f(2π,ω)f=eq\f(1,T)=eq\f(ω,2π)ωx+φφ3.函數(shù)y=sinx的圖象經(jīng)變換得到y(tǒng)=Asin(ωx+φ)的圖象的兩種途徑4.三角函數(shù)應(yīng)用(1)用正弦函數(shù)可以刻畫三種周期變化的現(xiàn)象:簡諧振動(單擺、彈簧等),聲波(音叉發(fā)出的純音),交變電流.(2)三角函數(shù)模型應(yīng)用題的關(guān)鍵是求出函數(shù)解析式,可以根據(jù)給出的已知條件確定模型f(x)=Asin(ωx+φ)+k中的待定系數(shù).(3)把實際問題翻譯為函數(shù)f(x)的性質(zhì),得出函數(shù)性質(zhì)后,再把函數(shù)性質(zhì)翻譯為實際問題的答案.1.求三角函數(shù)單調(diào)區(qū)間的兩種方法(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角u(或t),利用復(fù)合函數(shù)的單調(diào)性列不等式求解.(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.2.確定y=Asin(ωx+φ)+B(A>0,ω>0)的解析式的步驟(1)求A,B,確定函數(shù)的最大值M和最小值m,則A=,B=.(2)求ω,確定函數(shù)的周期T,則ω=.(3)求φ,常用方法有:①代入法:把圖象上的一個已知點代入(此時要注意該點在上升區(qū)間上還是在下降區(qū)間上)或把圖象的最高點或最低點代入;②五點法:確定φ值時,往往以尋找“五點法”中的特殊點作為突破口.具體如下:“第一點”(即圖象上升時與x軸的交點)為ωx+φ=0;“第二點”(即圖象的“峰點”)為ωx+φ=;“第三點”(即圖象下降時與x軸的交點)為ωx+φ=π;“第四點”(即圖象的“谷點”)為ωx+φ=;“第五點”(即圖象上升時與x軸的交點)為ωx+φ=2π.3.識別函數(shù)圖象的方法技巧函數(shù)圖象的識別可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(5)從函數(shù)的特殊點,排除不合要求的圖象.4.(1)由y=sinωx到y(tǒng)=sin(ωx+φ)的變換:向左平移(ω>0,φ>0)個單位長度而非φ個單位長度.(2)平移前后兩個三角函數(shù)的名稱如果不一致,應(yīng)先利用誘導公式化為同名函數(shù),ω為負時應(yīng)先變成正值.三角函數(shù)圖象性質(zhì)1.(多選題)(2021湖北省新高考高三下2月質(zhì)檢)已知函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則下列表述正確的是()A.SKIPIF1<0B.SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,C.a的最大值是SKIPIF1<0,D.SKIPIF1<0的最小正周期為SKIPIF1<0【答案】BCD【分析】由于函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),從而可得SKIPIF1<0,進而可求出SKIPIF1<0取值范圍,函數(shù)的周期和最值,從而可判斷ACD,再利用余弦函數(shù)的性質(zhì)求出單調(diào)區(qū)間,可判斷B【詳解】解:∵函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0,a的最大值是?SKIPIF1<0,SKIPIF1<0的最小正周期為SKIPIF1<0,故A錯,C、D正確;在SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以B正確故選:BCD.2.已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是()A.導函數(shù)為SKIPIF1<0B.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)D.函數(shù)SKIPIF1<0的圖象可由函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度得到【答案】C【分析】利用復(fù)合函數(shù)的求導法則判定選項A錯誤,利用SKIPIF1<0不是函數(shù)的最值判定選項B錯誤,利用SKIPIF1<0得到SKIPIF1<0,進而判定選項C正確,利用圖象平移判定選項D錯誤.【詳解】對于A:因為SKIPIF1<0,所以SKIPIF1<0,即選項A錯誤;對于B:因為SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象不關(guān)于直線SKIPIF1<0對稱,即選項B錯誤;對于C:當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上是增函數(shù),即選項C正確;對于D:因為SKIPIF1<0,所以SKIPIF1<0的圖象可由SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度得到,即選項D錯誤.故選:C.根據(jù)三角函數(shù)圖象求解析式1.(2022年安徽省亳州市第一中學高三上學期9月檢測)已知函數(shù)SKIPIF1<0的部分圖象如圖所示,點SKIPIF1<0,則將函數(shù)SKIPIF1<0圖象向左平移SKIPIF1<0個單位長度,然后橫坐標變?yōu)樵瓉淼?倍?縱坐標不變,得到的圖象對應(yīng)的函數(shù)解析式是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【分析】首先根據(jù)三角函數(shù)的圖象求得各個參數(shù),由振幅求得SKIPIF1<0,由定點坐標代入函數(shù)解析式求得SKIPIF1<0,所以SKIPIF1<0,再通過平移伸縮變化,即可得解.【詳解】因為函數(shù)SKIPIF1<0的部分圖象經(jīng)過點SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0.將函數(shù)SKIPIF1<0的圖象,然后橫坐標變?yōu)樵瓉淼?倍?縱坐標不變,得到SKIPIF1<0的圖象.故選:C.2(2020廣東省潮州市高三第二次模擬)函數(shù)SKIPIF1<0的部分圖象如圖所示.則函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為()A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】C【分析】利用圖象先求出周期,用周期公式求出SKIPIF1<0,利用特殊點求出SKIPIF1<0,然后根據(jù)正弦函數(shù)的單調(diào)性列不等式求解即可.【詳解】根據(jù)函數(shù)SKIPIF1<0的部分圖象,可得:SKIPIF1<0,解得:SKIPIF1<0,由于點SKIPIF1<0在函數(shù)圖象上,可得:SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,由于:SKIPIF1<0,可得:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0解得:SKIPIF1<0,SKIPIF1<0,可得:則函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為:SKIPIF1<0,SKIPIF1<0.故選C.三角函數(shù)圖象判斷1.(2020江西省靖安中學高三上學期第二次月考)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的部分圖象可以為()A.B.C.D.【答案】A【分析】由奇偶性可排除BD,再取特殊值SKIPIF1<0可判斷AC,從而得解【詳解】因為SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),故BD錯誤;當SKIPIF1<0時,令SKIPIF1<0,易得SKIPIF1<0,解得SKIPIF1<0,故易知SKIPIF1<0的圖象在SKIPIF1<0軸右側(cè)的第一個交點為SKIPIF1<0,又SKIPIF1<0,故C錯誤,A正確;故選:A2..(2022廣東省深圳市普通中學高三上學期質(zhì)量評估)函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象大致為()A. B.C. D.【答案】A【分析】由奇偶性可排除BC,由SKIPIF1<0時,SKIPIF1<0可排除D,由此得到結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0為偶函數(shù),圖象關(guān)于SKIPIF1<0軸對稱,可排除BC;當SKIPIF1<0時,SKIPIF1<0,可排除D,知A正確.故選:A.三角函數(shù)圖象變換1.(2021浙江省金華十校高三模擬)已知奇函數(shù)SKIPIF1<0的圖象由函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到,則m可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】逐項驗證SKIPIF1<0是否等于SKIPIF1<0可得答案.【詳解】當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到SKIPIF1<0,故A正確;當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到SKIPIF1<0,故B錯誤;當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到SKIPIF1<0,故C錯誤;當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位后得到SKIPIF1<0,故D錯誤;故選:A.2.(2020安徽省合肥市高三第三次教學質(zhì)量檢測)為了得到函數(shù)SKIPIF1<0的圖像,只需將函數(shù)SKIPIF1<0的圖像A.橫坐標伸長為原來的兩倍,縱坐標不變,再向右平移SKIPIF1<0個單位B.橫坐標伸長為原來的兩倍,縱坐標不變,再向左平移SKIPIF1<0個單位C.橫坐標縮短為原來的SKIPIF1<0,縱坐標不變,再向右平移SKIPIF1<0個單位D.橫坐標縮短為原來的SKIPIF1<0,縱坐標不變,再向左平移SKIPIF1<0個單位【答案】A【分析】由條件利用SKIPIF1<0的圖像變換規(guī)律,得到結(jié)論.【詳解】把函數(shù)SKIPIF1<0的圖像上所有點的橫坐標伸長為原來的兩倍,縱坐標不變得到函數(shù)SKIPIF1<0,再將函數(shù)SKIPIF1<0的圖像上所有點向右平移SKIPIF1<0個單位得到函數(shù)SKIPIF1<0.故選A1.(2021年全國高考乙卷)函數(shù)SKIPIF1<0的最小正周期和最大值分別是()A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和2 C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和2【答案】C【分析】利用輔助角公式化簡SKIPIF1<0,結(jié)合三角函數(shù)周期性和值域求得函數(shù)的最小正周期和最大值.【詳解】由題,SKIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,最大值為SKIPIF1<0.故選:C.2.(2021年全國高考乙卷)把函數(shù)SKIPIF1<0圖像上所有點的橫坐標縮短到原來的SKIPIF1<0倍,縱坐標不變,再把所得曲線向右平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖像,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】解法一:從函數(shù)SKIPIF1<0的圖象出發(fā),按照已知的變換順序,逐次變換,得到SKIPIF1<0,即得SKIPIF1<0,再利用換元思想求得SKIPIF1<0的解析表達式;解法二:從函數(shù)SKIPIF1<0出發(fā),逆向?qū)嵤└鞑阶儞Q,利用平移伸縮變換法則得到SKIPIF1<0的解析表達式.【詳解】解法一:函數(shù)SKIPIF1<0圖象上所有點的橫坐標縮短到原來的SKIPIF1<0倍,縱坐標不變,得到SKIPIF1<0的圖象,再把所得曲線向右平移SKIPIF1<0個單位長度,應(yīng)當?shù)玫絊KIPIF1<0的圖象,根據(jù)已知得到了函數(shù)SKIPIF1<0的圖象,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;解法二:由已知的函數(shù)SKIPIF1<0逆向變換,第一步:向左平移SKIPIF1<0個單位長度,得到SKIPIF1<0的圖象,第二步:圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,得到SKIPIF1<0的圖象,即為SKIPIF1<0的圖象,所以SKIPIF1<0.故選:B.3.(2021年全國新高考Ⅰ卷)下列區(qū)間中,函數(shù)SKIPIF1<0單調(diào)遞增的區(qū)間是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】解不等式SKIPIF1<0,利用賦值法可得出結(jié)論.【詳解】因為函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,對于函數(shù)SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,取SKIPIF1<0,可得函數(shù)SKIPIF1<0的一個單調(diào)遞增區(qū)間為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,A選項滿足條件,B不滿足條件;取SKIPIF1<0,可得函數(shù)SKIPIF1<0的一個單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,CD選項均不滿足條件.故選:A.4.(2021年全國高考甲卷)已知函數(shù)SKIPIF1<0的部分圖像如圖所示,則滿足條件SKIPIF1<0的最小正整數(shù)x為________.【答案】2【分析】先根據(jù)圖象求出函數(shù)SKIPIF1<0的解析式,再求出SKIPIF1<0的值,然后求解三角不等式可得最小正整數(shù)或驗證數(shù)值可得.【詳解】由圖可知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;由五點法可得SKIPIF1<0,即SKIPIF1<0;所以SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0;所以由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0;因為SKIPIF1<0,所以,方法一:結(jié)合圖形可知,最小正整數(shù)應(yīng)該滿足SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0的最小正整數(shù)為2.方法二:結(jié)合圖形可知,最小正整數(shù)應(yīng)該滿足SKIPIF1<0,又SKIPIF1<0,符合題意,可得SKIPIF1<0的最小正整數(shù)為2.故答案為:2.一、單選題1.(2022·福建·模擬預(yù)測)已知SKIPIF1<0為銳角,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】運用兩角和與差的正弦公式和同角的商數(shù)關(guān)系,計算即可得到所求值【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2022·遼寧錦州·一模)若SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先利用誘導公式得到SKIPIF1<0,再將弦化切,代入求解.【詳解】SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0故選:B3.(2022·江西九江·二模)已知函數(shù)SKIPIF1<0的部分圖像如圖所示,則SKIPIF1<0的解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)的定義域、奇偶性與函數(shù)值的正負即可得到結(jié)果【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0處無定義,排除選項A函數(shù)SKIPIF1<0的圖像關(guān)于原點對稱,故SKIPIF1<0為奇函數(shù),排除選項B當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,排除選項C故選:D.4.(2022·天津市寧河區(qū)蘆臺第一中學模擬預(yù)測)已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,將其圖象沿SKIPIF1<0軸向右平移SKIPIF1<0個單位,所得函數(shù)為奇函數(shù),則實數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)余弦型函數(shù)的最小正周期公式,結(jié)合余弦型函數(shù)圖象的變換性質(zhì)進行求解即可.【詳解】因為該函數(shù)的最小正周期為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,將該函數(shù)圖象沿SKIPIF1<0軸向右平移SKIPIF1<0個單位得到函數(shù)的解析式為SKIPIF1<0,因為函數(shù)SKIPIF1<0為奇函數(shù),所以有SKIPIF1<0,因為SKIPIF1<0,所以當SKIPIF1<0時,實數(shù)SKIPIF1<0有最小值SKIPIF1<0,故選:C5.(2022·浙江·模擬預(yù)測)已知E,F(xiàn)分別是矩形ABCD邊AD,BC的中點,沿EF將矩形ABCD翻折成大小為SKIPIF1<0的二面角.在動點P從點E沿線段EF運動到點F的過程中,記二面角SKIPIF1<0的大小為SKIPIF1<0,則(

)A.當SKIPIF1<0時,sinSKIPIF1<0先增大后減小B.當SKIPIF1<0時,sinSKIPIF1<0先減小后增大C.當SKIPIF1<0時,sinSKIPIF1<0先增大后減小D.當SKIPIF1<0時,sinSKIPIF1<0先減小后增大【答案】C【分析】根據(jù)二面角的定義通過作輔助線,找到二面角的平面角,在SKIPIF1<0△SKIPIF1<0中表示出SKIPIF1<0的值,利用SKIPIF1<0的值的變化來判斷SKIPIF1<0的變化即可.【詳解】當SKIPIF1<0時,由已知條件得SKIPIF1<0平面SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0為二面角SKIPIF1<0的平面角,在SKIPIF1<0△SKIPIF1<0中,SKIPIF1<0,動點P從點E沿線段EF運動到點F的過程中,SKIPIF1<0不斷減小,則SKIPIF1<0不斷增大,即SKIPIF1<0不斷增大,則SKIPIF1<0、SKIPIF1<0錯誤;當SKIPIF1<0時,由已知條件得SKIPIF1<0平面SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,垂足SKIPIF1<0在SKIPIF1<0的延長線上,過點SKIPIF1<0作SKIPIF1<0,垂足在SKIPIF1<0延長線上,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0為二面角SKIPIF1<0的平面角的補角SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0△SKIPIF1<0中,SKIPIF1<0,如下圖所示,動點P從點E沿線段EF運動到點F的過程中,SKIPIF1<0先變小后增大,則SKIPIF1<0先變大后變小,SKIPIF1<0先變大后變小,SKIPIF1<0,則SKIPIF1<0也是先變大,后變小,則SKIPIF1<0正確,SKIPIF1<0錯誤;故選:SKIPIF1<0.6.(2022·四川達州·二模(理))設(shè)SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0值域為SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<0【答案】B【分析】由題可得SKIPIF1<0,進而SKIPIF1<0,可判斷A,利用三角函數(shù)的性質(zhì)可判斷B,利用導函數(shù)可判斷C,由題可得SKIPIF1<0,可判斷D.【詳解】∵SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,∴函數(shù)的值域為SKIPIF1<0,故A錯誤;∵SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;∵SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,根據(jù)正弦函數(shù)在SKIPIF1<0上單調(diào)遞增,可知在SKIPIF1<0上存在唯一的實數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上有增有減,故C錯誤;由SKIPIF1<0,可得SKIPIF1<0,故D錯誤.故選:B.7.(2022·寧夏·銀川一中二模(理))下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】A.利用指數(shù)函數(shù)的性質(zhì)判斷;B.利用正切函數(shù)的性質(zhì)判斷;C.利用正弦函數(shù)的性質(zhì)判斷;D.利用函數(shù)的圖象判斷.【詳解】A.SKIPIF1<0,不是奇函數(shù),故錯誤;B.SKIPIF1<0在SKIPIF1<0上遞增,但在定義域SKIPIF1<0上不單調(diào),故錯誤;C.SKIPIF1<0在SKIPIF1<0上遞增,但在定義域R上不單調(diào),故錯誤;

D.SKIPIF1<0,其圖象如圖所示:由圖象知:定義域上既是奇函數(shù)又是增函數(shù),故正確,故選:D8.(2022·山西長治·模擬預(yù)測(理))若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)周期函數(shù)的定義,結(jié)合特例法進行判斷求解即可.【詳解】因為SKIPIF1<0,所以函數(shù)的周期為SKIPIF1<0.A:因為SKIPIF1<0,所以SKIPIF1<0,因此函數(shù)的周期不可能SKIPIF1<0,本選項不符合題意;B:因為SKIPIF1<0,所以SKIPIF1<0,因此函數(shù)的周期不可能SKIPIF1<0,本選項不符合題意;C:該函數(shù)的最小正周期為:SKIPIF1<0,因此函數(shù)的周期不可能SKIPIF1<0,本選項不符合題意;D:該函數(shù)的最小正周期為:SKIPIF1<0,因此本選項符合題意,故選:D9.(2022·天津·一模)已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的部分圖象如圖所示,則(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A【分析】根據(jù)圖象與SKIPIF1<0軸的交點縱坐標與振幅的關(guān)系,結(jié)合所處的區(qū)間的單調(diào)性,以及后續(xù)的單調(diào)遞增區(qū)間上的零點,列出方程組求解即得.【詳解】由函數(shù)圖象與SKIPIF1<0軸的交點縱坐標為1,等于振幅2的一半,且此交點處于函數(shù)的單調(diào)減區(qū)間上,同時在同一周期內(nèi)的后續(xù)單調(diào)區(qū)間上的零點的橫坐標為SKIPIF1<0,并結(jié)合SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故選:A10.(2022·新疆·模擬預(yù)測(理))我國著名數(shù)學家華羅庚曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來研究函數(shù)圖象的特征.我們從這個商標中抽象出一個函數(shù)的圖象如圖,其對應(yīng)的函數(shù)解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由定義域判斷A;利用特殊函數(shù)值:SKIPIF1<0、SKIPIF1<0的符號判斷B、C;利用奇偶性定義及區(qū)間單調(diào)性判斷D.【詳解】A:函數(shù)的定義域為SKIPIF1<0,不符合;B:由SKIPIF1<0,不符合;C:由SKIPIF1<0,不符合;D:SKIPIF1<0且定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),在SKIPIF1<0上SKIPIF1<0單調(diào)遞增,SKIPIF1<0上SKIPIF1<0單調(diào)遞減,結(jié)合偶函數(shù)的對稱性知:SKIPIF1<0上遞減,SKIPIF1<0上遞增,符合.故選:D11.(2022·江西·臨川一中模擬預(yù)測(理))己知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),且滿足SKIPIF1<0.有下列結(jié)論:①SKIPIF1<0;②若SKIPIF1<0,則函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0;③關(guān)于x的方程SKIPIF1<0在區(qū)間SKIPIF1<0上最多有5個不相等的實數(shù)根;④若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有5個零點,則SKIPIF1<0的取值范圍為SKIPIF1<0.其中正確的結(jié)論的個數(shù)為(

)A.1 B.2 C.3 D.4【答案】B【分析】對于①:利用對稱性直接求得;對于②:直接求出函數(shù)的最小正周期,即可判斷;對于③:先判斷出周期SKIPIF1<0,直接解出SKIPIF1<0在區(qū)間SKIPIF1<0上最多有3個不相等的實數(shù)根,即可判斷.對于④:由題意分析SKIPIF1<0,建立關(guān)于SKIPIF1<0的不等式組,求出SKIPIF1<0的取值范圍.【詳解】函數(shù)SKIPIF1<0滿足SKIPIF1<0.對于①:因為SKIPIF1<0,所以SKIPIF1<0.故①正確;對于②:由于SKIPIF1<0,所以函數(shù)SKIPIF1<0的一條對稱軸方程為SKIPIF1<0.又SKIPIF1<0為一個對稱中心,由正弦圖像和性質(zhì)可知,所以函數(shù)的最小正周期為SKIPIF1<0.故②錯誤;對于③:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),且滿足SKIPIF1<0,可得:SKIPIF1<0,所以周期SKIPIF1<0.周期越大,SKIPIF1<0的根的個數(shù)越少.當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上有3個不相等的實數(shù)根:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.故③錯誤.對于④:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有5個零點,所以SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.且滿足SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.故④正確.故選:B12.(2022·山西呂梁·模擬預(yù)測(文))將函數(shù)SKIPIF1<0圖象上的所有點向左平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0的圖象,則(

)A.SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0 D.直線SKIPIF1<0平是SKIPIF1<0的一條對稱軸【答案】D【分析】根據(jù)三角函數(shù)的圖象變換,可判定A錯誤;利用函數(shù)的圖象與性質(zhì),可判定B,C錯誤;根據(jù)SKIPIF1<0,可判定D正確.【詳解】由題意,函數(shù)SKIPIF1<0圖象上的所有點向左平移SKIPIF1<0個單位長度,可得SKIPIF1<0,故A錯誤;令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以B,C錯誤;因為SKIPIF1<0,故直線SKIPIF1<0為SKIPIF1<0的一條對稱軸,故D正確.故選:D.13.(2022·內(nèi)蒙古呼和浩特·一模(理))如圖是一大觀覽車的示意圖,已知觀覽車輪半徑為80米,觀覽車中心SKIPIF1<0到地面的距離為82米,觀覽車每30分鐘沿逆時針方向轉(zhuǎn)動1圈.若SKIPIF1<0是從距地面42米時開始計算時間時的初始位置,以觀覽車的圓心SKIPIF1<0為坐標原點,過點SKIPIF1<0的水平直線為x軸建立平面直角坐標系xOy.設(shè)從點SKIPIF1<0運動到點P時所經(jīng)過的時間為t(單位:分鐘),且此時點P距離地面的高度為h(單位:米),則h是關(guān)于t的函數(shù).當SKIPIF1<0時關(guān)于SKIPIF1<0的圖象,下列說法正確的是(

)A.對稱中心為SKIPIF1<0B.對稱中心為SKIPIF1<0C.對稱軸為SKIPIF1<0D.對稱軸為SKIPIF1<0【答案】B【分析】先由題意得到SKIPIF1<0,進而得到SKIPIF1<0后,以SKIPIF1<0為始邊,SKIPIF1<0為終邊的角SKIPIF1<0,從而得到點P的縱坐標為SKIPIF1<0,即P距地面的高度函數(shù)求解.【詳解】解:由題意得SKIPIF1<0,而SKIPIF1<0是以SKIPIF1<0為始邊,SKIPIF1<0為終邊的角,由OP在SKIPIF1<0內(nèi)轉(zhuǎn)過的角為SKIPIF1<0,可知以SKIPIF1<0為始邊,SKIPIF1<0為終邊的角為SKIPIF1<0,則點P的縱坐標為SKIPIF1<0,所以P距地面的高度為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以對稱中心為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以對稱軸為SKIPIF1<0,故選:B14.(2022·河南·模擬預(yù)測(理))密位制是度量角的一種方法,把一周角等分為6000份,每一份叫做1密位的角.在角的密位制中,單位可省去不寫,采用四個數(shù)碼表示角的大小,在百位數(shù)與十位數(shù)之間畫一條短線,如7密位寫成“0-07”,478密位寫成“4-78”.如果一個半徑為4的扇形,其圓心角用密位制表示為12-50,則該扇形的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意中給的定義可知該扇形的圓心角為SKIPIF1<0,結(jié)合扇形的面積公式計算即可.【詳解】依題意,該扇形的圓心角為SKIPIF1<0.又SKIPIF1<0,故所求扇形的面積為SKIPIF1<0.故選:A.二、多選題15.(2022·河北·模擬預(yù)測)已知角SKIPIF1<0的終邊經(jīng)過點SKIPIF1<0.則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)同終邊角的正弦和余弦可知SKIPIF1<0,然后解出方程并判斷SKIPIF1<0,逐項代入即可.【詳解】解:由題意得:如圖所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0(舍去)或SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故A正確;SKIPIF1<0,故D正確;SKIPIF1<0,故B正確;SKIPIF1<0,故C錯誤;故選:ABD16.(2022·重慶八中模擬預(yù)測)下列函數(shù)的圖像中,與曲線SKIPIF1<0有完全相同的對稱中心的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】根據(jù)正弦、余弦、正切函數(shù)的圖像,求出各個函數(shù)的對稱中心,比較即可得出答案.【詳解】設(shè)k∈Z,對于SKIPIF1<0,由SKIPIF1<0;對于A:由SKIPIF1<0;對于B:由SKIPIF1<0;對于C:由SKIPIF1<0;對于D:由SKIPIF1<0;則B和D的函數(shù)與題設(shè)函數(shù)有完全相同的對稱中心.故選:BD.17.(2022·江蘇·海安高級中學二模)已知SKIPIF1<0,則(

)A.SKIPIF1<0

B.SKIPIF1<0

C.SKIPIF1<0

D.SKIPIF1<0

【答案】ABC【分析】將SKIPIF1<0變?yōu)镾KIPIF1<0結(jié)合指數(shù)函數(shù)的性質(zhì),判斷A;構(gòu)造函數(shù)SKIPIF1<0,求導,利用其單調(diào)性結(jié)合圖象判斷x,y的范圍,利用余弦函數(shù)單調(diào)性,判斷B;利用正弦函數(shù)的單調(diào)性判斷C,結(jié)合余弦函數(shù)的單調(diào)性,判斷D.【詳解】由題意,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,A對;SKIPIF1<0,令SKIPIF1<0,即有SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,因為SKIPIF1<0,∴SKIPIF1<0,作出函數(shù)SKIPIF1<0以及SKIPIF1<0大致圖象如圖:則SKIPIF1<0,∴SKIPIF1<0,結(jié)合圖象則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,B對;結(jié)合以上分析以及圖象可得SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,C對;由C的分析可知,SKIPIF1<0,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0不是單調(diào)函數(shù),即SKIPIF1<0不成立,即SKIPIF1<0不成立,故D錯誤;故選:ABC.【點睛】本題綜合考查了有條件等式下三角函數(shù)值比較大小問題,設(shè)計指數(shù)函數(shù)性質(zhì),導數(shù)的應(yīng)用以及三角函數(shù)的性質(zhì)等,難度較大,解答時要注意構(gòu)造函數(shù),數(shù)形結(jié)合,綜合分析,進行解答.18.(2022·湖北·一模)已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱 B.SKIPIF1<0的最小正周期為SKIPIF1<0C.SKIPIF1<0的最小值為1 D.SKIPIF1<0的最大值為SKIPIF1<0【答案】ACD【分析】A:驗證SKIPIF1<0與SKIPIF1<0是否相等即可;B:驗證SKIPIF1<0與SKIPIF1<0相等,從而可知SKIPIF1<0為f(x)的一個周期,再驗證f(x)在(0,SKIPIF1<0)的單調(diào)性即可判斷SKIPIF1<0為最小正周期;C、D:由B選項即求f(x)最大值和最小值.【詳解】SKIPIF1<0,故選項A正確;∵SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0的一個周期.當SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0.∵當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0的最小正周期為SKIPIF1<0,選項B錯誤;由上可知SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,最大值為SKIPIF1<0,由SKIPIF1<0的周期性可知,選項CD均正確.故選:ACD.三、解答題19.(2022·浙江寧波·二模)已知SKIPIF1<0SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最小正周期及單調(diào)遞增區(qū)間;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0的取值范圍.【答案】(1)最小正周期SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【分析】(1)將SKIPIF1<0化為只含一個三角函數(shù)形式,根據(jù)正弦函數(shù)的性質(zhì)即可求得答案;(2)將SKIPIF1<0展開化簡為SKIPIF1<0,結(jié)合SKIPIF1<0,求出SKIPIF1<0的范圍,即可求得答案.(1)SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0的取值范圍為SKIPIF1<0.20.(2022·天津三中一模)已知SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0使函數(shù)SKIPIF1<0為偶函數(shù);(2)在(1)成立的條件下,求滿足SKIPIF1<0,SKIPIF1<0的SKIPIF1<0的集合.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由恒等變換得SKIPIF1<0,進而根據(jù)奇偶性求解即可;(2)由題知SKIPIF1<0,再根據(jù)SKIPIF1<0得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論