包括等比等差三角平面知識點_第1頁
包括等比等差三角平面知識點_第2頁
包括等比等差三角平面知識點_第3頁
包括等比等差三角平面知識點_第4頁
包括等比等差三角平面知識點_第5頁
已閱讀5頁,還剩5頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 數列等差數列等比數列定義遞推公式;通項公式()中項()()前項和重要性質等差、等比數列:等差數列等比數列定義通項公式=+(n-1)d=+(n-k)d=+-d求和公式中項公式A= 推廣:2=。推廣:性質1若m+n=p+q則 若m+n=p+q,則。2若成A.P(其中)則也為A.P。若成等比數列 (其中),則成等比數列。3 成等差數列。成等比數列。4 , 5看數列是不是等差數列有以下三種方法:2()(為常數).看數列是不是等比數列有以下四種方法:(,)注:i. ,是a、b、c成等比的雙非條件,即a、b、c等比數列.ii. (ac0)為a、b、c等比數列的充分不必要.iii. 為a、b、c等比數列的

2、必要不充分.iv. 且為a、b、c等比數列的充要.注意:任意兩數a、c不一定有等比中項,除非有ac0,則等比中項一定有兩個.(為非零常數).正數列成等比的充要條件是數列()成等比數列.數列的前項和與通項的關系:注: (可為零也可不為零為等差數列充要條件(即常數列也是等差數列)若不為0,則是等差數列充分條件).等差前n項和 可以為零也可不為零為等差的充要條件若為零,則是等差數列的充分條件;若不為零,則是等差數列的充分條件. 非零常數列既可為等比數列,也可為等差數列.(不是非零,即不可能有等比數列)2. 等差數列依次每k項的和仍成等差數列,其公差為原公差的k2倍;若等差數列的項數為2,則;若等差數

3、列的項數為,則,且, . 3. 常用公式:1+2+3 +n = 注:熟悉常用通項:9,99,999,; 5,55,555,.三角函數9、誘導公式:“奇變偶不變,符號看象限” 公式組二 公式組三 公式組四 公式組五 公式組六 (二)角與角之間的互換公式組一 公式組二 公式組三 公式組四 公式組五 ,.10. 正弦、余弦、正切、余切函數的圖象的性質:(A、0)定義域RRR值域RR周期性 奇偶性奇函數偶函數奇函數奇函數當非奇非偶當奇函數單調性上為增函數;上為減函數();上為增函數上為減函數()上為增函數()上為減函數()上為增函數;上為減函數()注意:與的單調性正好相反;與的單調性也同樣相反.一般地

4、,若在上遞增(減),則在上遞減(增).與的周期是.或()的周期.的周期為2(,如圖,翻折無效). 的對稱軸方程是(),對稱中心();的對稱軸方程是(),對稱中心();的對稱中心().當;.與是同一函數,而是偶函數,則.函數在上為增函數.() 只能在某個單調區間單調遞增. 若在整個定義域,為增函數,同樣也是錯誤的.定義域關于原點對稱是具有奇偶性的必要不充分條件.(奇偶性的兩個條件:一是定義域關于原點對稱(奇偶都要),二是滿足奇偶性條件,偶函數:,奇函數:)奇偶性的單調性:奇同偶反. 例如:是奇函數,是非奇非偶.(定義域不關于原點對稱)奇函數特有性質:若的定義域,則一定有.(的定義域,則無此性質)

5、不是周期函數;為周期函數();是周期函數(如圖);為周期函數();的周期為(如圖),并非所有周期函數都有最小正周期,例如: . 有.平面向量(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法 ;字母表示:a;坐標表示法 aj(,).(3)向量的長度:即向量的大小,記作a.(4)特殊的向量:零向量aOaO.單位向量aO為單位向量aO1.(5)相等的向量:大小相等,方向相同(1,1)(2,2)(6) 相反向量:a=-bb=-aa+b=0(7)平行向量(共線向量):方向相同或相反的向量,稱為平行向量.記作ab.平行向量也稱為共線向量.3.向量的運算運算類型幾何方法坐標方法運算性質向量的加

6、法1.平行四邊形法則2.三角形法則向量的減法三角形法則,數乘向量1.是一個向量,滿足:2.0時, 同向;0時, 異向;=0時, .向量的數量積是一個數1.時,.2. 4.重要定理、公式(1)平面向量基本定理e1,e2是同一平面內兩個不共線的向量,那么,對于這個平面內任一向量,有且僅有一對實數1,2,使a1e12e2.(2)兩個向量平行的充要條件abab(b0)x1y2x2y1O.(3)兩個向量垂直的充要條件ababOx1x2y1y2O. (5)平移公式設點P(x,y)按向量a(,)平移后得到點P(x,y),則+a或曲線yf(x)按向量a(,)平移后所得的曲線的函數解析式為:yf(x)(6)正、余弦定理正弦定理:余弦定理:a2b2c22bccosA,b2c2a22cacosB,c2a2b22abcosC.附:三角形的五個“心”;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論