




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 Chap 4 Discrete-Time Systems Time-Domain Characterization of LTI Discrete- Times Systems Classification of discrete-time systems Impulse and step responses Input-output relationship and Difference equation; Stability and Causality of LTI DT system Frequency-Domain Characterization of LTI Discrete-T
2、imes Systems Phase and Group DelayDSP group 2007-chap2-ed12 4.1 Discrete-Time System ExamplesDiscrete-Time SystemxnynInput sequenceOutput sequenceExample: A DT system is composed of adder, multiplier, and delayerDSP group 2007-chap2-ed13 4.1 Discrete-Time System Examples Accumulator: Initial conditi
3、on: y1DSP group 2007-chap2-ed14 Moving Average Filter: 4.1 Discrete-Time System ExamplesOr DSP group 2007-chap2-ed15Noise + signal 4.1 Discrete-Time System ExamplesNoise cancellationFiltered signalP138DSP group 2007-chap2-ed16 4.1 Discrete-Time System Examplesfreqz(1/3 1/3 1/3, 1)freqz(1/6*ones(1,6)
4、, 1)DSP group 2007-chap2-ed17 4.1 Discrete-Time System Examples Exponentially Weighted Running Average Filter Linear Interpolator - linear factor-of-2 interpolatorP138-140 - bilinear interpolationFigure4.5Median FilterFigure4.5Figure4.6DSP group 2007-chap2-ed18 4.2 Classification of Discrete-Time Sy
5、stems Linear system - superposition always holdsare the responses to the inputsequencesrespectively, for input, the response is Above property must hold for any arbitrary constants a and b and for all possible inputs x1n and x2nDSP group 2007-chap2-ed19 4.2 Classification of Discrete-Time Systems -
6、ExamplesExample4.3: AccumulatorSolution:Assume:Let Then Linear systemDSP group 2007-chap2-ed110 4.2 Classification of Discrete-Time Systems - ExamplesExample: systemSolution:Assume:Let Then Nonlinear systemDSP group 2007-chap2-ed111 4.2 Classification of Discrete-Time Systems Shift-invariant (time-i
7、nvariant) systemis the responses to the input sequence , for input, the response isExample4.5: up-samplerSolution:Assume:DSP group 2007-chap2-ed112 4.2 Classification of Discrete-Time Systems - ExamplesLet Then While Time-varying systemDSP group 2007-chap2-ed113 4.2 Classification of Discrete-Time S
8、ystems Causal systemDSP group 2007-chap2-ed114 4.2 Classification of Discrete-Time Systems Stable system If and only if for every bounded input, the output is also bounded - stable system BIBO (bounded-input, bounded output)DSP group 2007-chap2-ed115A discrete-time system is defined to be passive if
9、, for every finite-energy input xn, the output yn, has, at most, the same energy, i.e. For a lossless system, the above inequality is satisfied with an equal sign for every input. 4.2 Classification of Discrete-Time Systems Passive and Lossless SystemsDSP group 2007-chap2-ed116yn= xnN, with N a posi
10、tive integerIts output energy is given by Hence, it is a passive system if | 1 and is a lossless system if | =1 4.2 Classification of Discrete-Time SystemsExample4.8: Discrete-time systemDSP group 2007-chap2-ed117 4.3 Impulse and step response Impulse response: the response of a digital filter to a
11、unit sample sequence n. denotation: hn. Step response: the response of a digital filter to a unit step sequence un. denotation: sn. DSP group 2007-chap2-ed118 4.3 Impulse and step responseOr Example4.9: LTI discrete-time systemImpulse responseDSP group 2007-chap2-ed119 4.4 Time-domain Characterizati
12、on of LTI Discrete-Time System Linear time-invariant (LTI) Discrete-time (DT) system: satisfies both the linearity and the time-invariance properties. interconnection of simple subsystems.4.4.1 Input-output relationship A consequence of the linear, time-invariance property is that an LTI DT system i
13、s completely characterized by its impulse response;DSP group 2007-chap2-ed120 4.4.1 Input-output relationshipKnowing the impulse response, we can compute the output of the system to any arbitrary input.Because hn is the impulse response of LTI DT system.i.e.,Using time-invarianceUsing linearityDSP g
14、roup 2007-chap2-ed121 4.4.1 Input-output relationship Convolution sum: Definition Commutative operation DSP group 2007-chap2-ed122 4.4.1 Input-output relationship - Convolution sum distributive operation associative operation DSP group 2007-chap2-ed123 4.4.3 Stability Condition in terms of the impul
15、se response Meaning of stable system: BIBO An LTI digital filter is BIBO stable if and only if absolutely summableP151DSP group 2007-chap2-ed124 4.4.4 Causality Condition in terms of the impulse response An LTI digital filter is causal if and only ifDSP group 2007-chap2-ed125Cascade ConnectionImpuls
16、e response hn of the cascade of two LTI discrete-time systems with impulse responses h1n and h2n is given by 4.5 Simple interconnection schemesDSP group 2007-chap2-ed126Note: The interconnection order of the systems in the cascade has no effect on the overall impulse response.A cascade connection of
17、 two stable systems is stable.A cascade connection of two passive (lossless) systems is passive (lossless) . 4.5 Simple interconnection schemesDSP group 2007-chap2-ed127Parallel ConnectionImpulse response hn of the parallel connection of two LTI discrete-time systems with impulse responses h1n and h
18、2n is given by hn = h1n + h2n 4.5 Simple interconnection schemes28h1n= n + 0.5 n 1h2n= 0.5 n 0.25 n 1h3n= 2 n h4n= 2(0.5)nunConsider the discrete-time system where 4.5 Simple interconnection schemesDSP group 2007-chap2-ed129Overall impulse response hn is given bySimplifying the block-diagram we obta
19、inh1n= n + 0.5 n 1h2n= 0.5 n 0.25 n 1h3n= 2 n h4n= 2(0.5)nun 4.5 Simple interconnection schemesDSP group 2007-chap2-ed130 4.6 Finite-Dimensional LTI Discrete-Time Systems -Linear Constant Coefficient Difference Equation Order: max(N,M) Input: xn Output: ynSolution is referred to “Signals and Systems
20、”DSP group 2007-chap2-ed131 4.6 Finite-Dimensional LTI Discrete-Time Systems -Linear Constant Coefficient Difference EquationExample 4.22Solution:Homogenous response:forcing response:Total response:P158DSP group 2007-chap2-ed132 4.6 Finite-Dimensional LTI Discrete-Time Systems -Linear Constant Coeff
21、icient Difference Equation Output Computation Using Matlaby=filter (p,d,x)y, sf=filter (p,d,x,si)h,m=impz (p,d,n)s, m=stepz (p,d,n) Impulse and Step response computation Using MatlabDSP group 2007-chap2-ed133 4.7 Classification of LTI DT Systems Classification based on impulse response length Finite
22、 impulse response (FIR) Infinite impulse response (IIR)DSP group 2007-chap2-ed134 Nonrecursive: The output sample can be calculated sequentially, knowing only the present and past input samples. 4.7.1 Classification of LTI DT Systems-FIRDSP group 2007-chap2-ed135 For a causal IIR DT system with a ca
23、usal input xn, the convolution sum is expressed: 4.7.1 Classification of LTI DT Systems-IIRDSP group 2007-chap2-ed1364.7.2 Classification based on Output calculation process application for model-based spectral analysis, statistical analysis based on the form of the difference equation- Moving avera
24、ge (MA) model- Autoregressive(AR) model- ARMA model37 4.8 The Frequency Response of LTI DT System Eigenfunction : e j n Let xn = ej n, LTI system with impulse response hn, the output of the LTI system is:Or rewritten as DSP group chap3-ed138 4.8.1 Definition of frequency response -Property of Freque
25、ncy Response Frequency response H(e j) : is the DTFT of the impulse response hn; is a continuous function of ; is a periodic function of with a period 2; is a complex function of real variable .DSP group chap3-ed139 4.8.1 Definition of frequency response - Gain and Attentuation Gain function : Atten
26、uation (loss) function : H(e j) Provides a frequency-domain description of the systemDSP group chap3-ed140 4.8.2 Frequency-Domain Characterization of the LTI DT SystemExample Input sequence xn = anun, |a|1,LTI system with impulse response:hn = bnun, |b|1. Find the output sequence yn .Solution:DSP gr
27、oup chap3-ed142 4.8.3 Frequency Response of LTI DT Systems LTI FIR DT Systems :DSP group chap3-ed143 4.8.3 Frequency Response of LTI DT Systems LTI IIR DT Systems :DSP group chap3-ed144 4.8.3 Frequency Response of LTI DT SystemExample 4.31Determine the frequency response of moving-average filter:Sol
28、ution:DSP group chap3-ed145H=freqz(h,1,w); 4.8.4 Frequency Response Computation Using MatlabDSP group chap3-ed146 4.8.5 The Concept of Filtering pass certain frequency components in an input sequence without any distortion (if possible) block other frequency components. digital filters: Systems that
29、 complement filtering functions The key to the filtering process is : Filtering DSP group chap3-ed147 4.8.5 The Concept of Filtering - Lowpass digital filter Real coefficient LTI DT system characterized by a magnitude function : input sequence: output sequence: Lowpasscc|H( e j )|10 Ex.4.32 : Design
30、 a simple digital filterDSP group chap3-ed148 4.9 Phase and Group delay 4.9.1 Definition: The input xn of LTI DT system H(e j) is a sinusoidal signal of frequency 0, i.e., The output ynDSP group chap3-ed149 4.9.1 The Definition of Phase delay phase delay The output yn is a time-delayed version of th
31、e input xn when phase delay is an integer; Phase delay has a physical meaning only with respect to the underlying continuous-time functions associated with the input xn and output sequence yn ;DSP group chap3-ed150 4.9.1 The Definition of - Group delay When the input xn contains many sinusoidal comp
32、onents with different frequencies that are not harmonically related, each component will go through different phase delays. Group delay is defined to describe the signal delay:DSP group chap3-ed151 In defining the group delay, It is assumed that the phase function is unwrapped so that its derivative
33、 exists. Group delay also has a physical meaning only with respect to the underlying continuous-time functions associated with yn and xn. 4.9.1 The Definition of - Group delayDSP group chap3-ed152 4.9.1 Definition -Comparison between phase delay and group delayDSP group chap3-ed153 4.9.1 Definition - Examples of group delayExample-A1FIR system with input-output relation:Phase function:Group delay:DSP group chap3-ed154 4.9.1 Definition - Examples of group delayExample-A2moving-average filter:Phase fu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級信息技術上冊 第4課 送給爸爸的賀卡教學設計 華中師大版
- 《精英銷售技巧與策略》課件
- 小學滬教版 (五四制)五、幾何小實踐小練習(2)教學設計
- 多邊投資擔保借款合同書(4篇)
- 學生勵志演講稿(16篇)
- Module 6 Unit 1 You have got a letter from New York(教學設計)-2024-2025學年外研版(三起)英語六年級上冊
- 五年級體育上冊 第二十五課換物接力跑 蹲距式跳遠教學設計
- 小學數學蘇教版五年級下冊六 圓教學設計
- 內蒙古呼和浩特體育中心面向社會招聘人才筆試歷年參考題庫附帶答案詳解
- 信息技術閩教版活動四 感受電子表格的魅力獲獎表格教案
- 安裝工程類別劃分標準及有關規定31183
- 【道法】做核心思想理念的傳承者(教案)-2024-2025學七年級道德與法治下冊(統編版)
- 2025-2030中國復合材料行業市場發展現狀及發展趨勢與投資風險研究報告
- 2025年濮陽職業技術學院單招職業適應性考試題庫及答案1套
- 血站新進員工培訓
- 牧原股份養殖場臭氣治理技術的創新應用
- 2025年社工招聘考試試題及答案
- 考編醫療面試題及答案
- 2025春夏童裝童鞋行業趨勢白皮書
- 天鵝藝術漆施工方案
- 腦卒中患者口腔健康素養的研究進展
評論
0/150
提交評論