




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第3講 與數(shù)的簡單應(yīng)用、選擇題1.(2019山西太原模擬)設(shè)函數(shù)f(x)=1x3-x+m的極大值為1,則函數(shù)f(x)的極小值為()3A.-1B.-1C.1 D.133答案 A f '(x)=x2-1,由 f '(x)=0 得 xi=-1,x2=1,所以 f(x)在(-°°-1)上單調(diào)遞增,在(-1,1)上單調(diào)遞減,在(1,+ 00t單調(diào)遞增,所以f(x)在x=-1處取得極大值,易知f(-1)=1,得m=:f(x)3在x=1處取得極小值,f(1)=1M3-1+L. 33312.(2019山東泰安模擬)已知f(x)=4x2+sin(2+ x), f '(
2、x)為f(x)的導(dǎo)函數(shù),則y=f '(x)的圖象大致是()答案 A 易知 f(x)=1x2+cos x,所以 f '(x)=2x-sin x, f '(x)為奇函數(shù),排除 B,D;當(dāng) x=6時(shí),f '(x)=22<0,排除 G故選 A.3.(2019安徽模擬)已知 心)二號,則()A. f(2)>f(e)>f(3)B. f(3)>f(e)>f(2)C. f(3)/2)>f(e)D. f(e)河3)>f(2)答案 D 易知 f(x)的定義域是(0,+ of J(x)=*?, .當(dāng) x C (0,e)時(shí),f '(x)
3、>0;當(dāng) x (e,+ O 時(shí),f '(x)<0,所以 f(x)max=f(e),又 f(2)=耍? f(3)=?=詈,所以 f(e)>f/2).4.(2019四川成都摸底)已知函數(shù)f(x)=x3-ax在(-1,1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A.(1,+ 00) B.3,+ 0°)C.(-0°,1D.(-oo,3答案 B f '(x)=3x2a又 f(x)在(-1,1)上單調(diào)遞減,;3x2-a<0在(-1,1)上包成立,.a3.5.(2019廣東廣州模擬)設(shè)函數(shù)f(x)=x3+ax2,若曲線y=f(x)在點(diǎn)P(x0, f(x
4、0)處的切線方程為x+y=0,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(1,-1)C.(-1,1) D.(1,-1)或(-1,1)答案 D f '(x)=3x2+2ax.曲線f(x)在點(diǎn)P處的切線方程為x+y=0, . 3?+2axo=-1,又x0+?+a?=0,. . x0=+,當(dāng) x0=1 時(shí),f(x0)=-1;當(dāng) xo=-1 時(shí),f(x0)=1. .,點(diǎn) P 坐標(biāo)為(1,-1)或(-1,1).6 .(2019廣東廣州模擬)若函數(shù)f(x)=ex(sin x+acos x)ft(4 ,2)上單調(diào)遞增,則實(shí)數(shù)a的取值 范圍是()A.(-8,1B.(-OO,1)C.1,+ 00) D.(1
5、,+ 00)答案 A f '(x)=exsin x+cos x-a(sin x-cos x),當(dāng) a=0 時(shí),f '(x)=ex(sin x+cos x),顯然x (4,2)時(shí),f '(x)>0 包成立,排除 C D;當(dāng) a=1 時(shí),f '(x)=2excos x,x C (4,:)時(shí),f '(x)>0, 所以選A.二、填空題17 .(2019湖南長沙調(diào)研)已知y=f(x)是奇函數(shù),當(dāng)x (0,2)時(shí),f(x)=ln x-ax(?>力當(dāng) xC(-2,0)時(shí),f(x)的最小值為1,則a=.答案1解析 由題知,當(dāng)x C (0,2)時(shí),f(x
6、)的最大值為-1,f '(x)=1-a.令 f '(x)=0,得 x=1?當(dāng) 0<x<?寸,f '(x)>0;當(dāng) x>;?寸,f '(x)<0. 1 f(x) max=f(?)=-ln a-1=-1,解得 a=1.8.(2019湖北武漢模擬)若函數(shù)f(x)=2x2-ln x在其定義域的一個(gè)子區(qū)間(k-1,k+1)內(nèi)存在最小值,則實(shí)數(shù)k的取值范圍是.3答案1,2)1 1?1 v 1 v k 1 . 一解析f(x)的止義域?yàn)?0,十 °°f),'(x)=4x-?由f '(x)=0解得x=2,由-2,解
7、得2 ?71 >0,310k<2.9.(2019寧夏銀川診斷)若函數(shù)f(x)=ax3+3x2-x恰好有三個(gè)單調(diào)區(qū)間,則實(shí)數(shù)a的取值范圍是.答案(-3,0)U(0,+ oo)解析f '(x)=3ax2+6x-1,由f(x)恰好有三個(gè)單調(diào)區(qū)間,得f '(x)有兩個(gè)不相等的零點(diǎn).所以aw 0,且A=36+12a>Q,單得a>-3,所以a的取值范圍是(-3,0) U (0,+ >.10.(2019江西上饒模擬)若點(diǎn)P是曲線y=x2-ln x上任意一點(diǎn),則點(diǎn)P到直線y=x-2的距離的最小值為.答案法 解析 易知y=x2-ln x的定義域?yàn)?0,+ 00當(dāng)點(diǎn)P
8、是曲線的切線中與直線y=x-2平行的直線的切點(diǎn)時(shí),點(diǎn)P到直線y=x-2的距離的值最小,如圖所示.令y'=2x-、1,解得x=1,所以P(1,1)所以點(diǎn)P到直線y=x-2的距離的最小值dmgW花. ?v2三、解答題11.(2019福建六校聯(lián)考節(jié)選)已知函數(shù)f(x)=(x-1)exWax2討論f(x)的單調(diào)性.解析f(x)的定義域?yàn)?(-OO,+ OO ),f '(x)=ex+(x-1)ex-ax=x(ex-a).(i)若 a00,貝U當(dāng) xC(-oo,0時(shí),f '(x)<0;當(dāng) x (0,+ o<, f '(x)>0,所以f(x)在(-°
9、;0,0上單調(diào)遞減,在(0,+ oo上單調(diào)遞增.(ii)若 a>0,由 f '(x)=0 得 x=0 或 x=ln a.若 a=1,則 f '(x)=x(ex-1戶 0,所以f(x)在(-8,十二江單調(diào)遞增.若 0<a<1,則 ln a<0,所以當(dāng) x C (-oo,in a)或 x (0,+, f '(x)>0;當(dāng) xC (ln a,0)時(shí),f '(x)<0,所以f(x)在(qjn a),(0,+ W)單調(diào)遞增,在(ln a,0)上單調(diào)遞減.若a>1,則In a>0所以當(dāng)xC (-巴?;騲 C (ln a,+ 0
10、0時(shí),f '(x)>0;當(dāng) xC (0,ln a)時(shí),f '(x)<0,所以f(x)在(-°0,0),(in a,+ o上單調(diào)遞增,在(0,in a)上單調(diào)遞減.綜上,當(dāng)a<0時(shí),f(x)在(-°0,0上單調(diào)遞減,在(0,+ 0止單調(diào)遞增;當(dāng)0<a<1時(shí),f(x)在(-oojn a),(0,+ W單調(diào)遞增,在(in a,0)上單調(diào)遞減;當(dāng)a=1時(shí),f(x)在(-°°,+ oo氏單調(diào)遞增;當(dāng)a>1時(shí),f(x)在(-ooQMin a,+ o上單調(diào)遞增,在(0,in a)上單調(diào)遞減.12.(2019江西宜春模
11、擬)已知函數(shù)f(x)=ln x-ax(a R).i當(dāng)a=2時(shí),求f(x)的極值;(2)討論函數(shù)f(x)在定義域內(nèi)極值點(diǎn)的個(gè)數(shù).解析 當(dāng) a=1 時(shí),f(x)=ln x-2x,定義域?yàn)?0,+ 8),f(x)=?- 2=22?令 f '(x)=0,得 x=2,當(dāng)x變化時(shí),f '(x), f(x)的變化情況如表所示.x(0,2)2(2,+ o)f '(x)+0-f(x) / in 2-1所以f(x)的極大值為f(2), f(2)=in 2-1,無極小值.(2)f(x)的定義域?yàn)?0,+ oo),f '僅)=?=號&>0).若a& 0,則f '(x)>0, f(x)在(0,+ 單調(diào)遞增,此時(shí)f(x)無極值點(diǎn);若a>0,則令f '(x)=0得x=?當(dāng) xC(0, 3時(shí),f '(x)>0,當(dāng) xC (1?,+ 8)時(shí),f '(x)<0,所以f(x)在x=*有極大值,即有一個(gè)極大值點(diǎn),無極小值點(diǎn).綜上,當(dāng)a< 0時(shí),f(x)無極值點(diǎn),當(dāng)a>0時(shí),f(x)有一個(gè)極大值點(diǎn)x=1?無極小值點(diǎn).13.(2019安徽合肥質(zhì)檢節(jié)選)已知函數(shù)f(x)=excos x-x.求函數(shù)f(x)在區(qū)間0, 2上的最大值和最小值.解析 令 g(x)=f '(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年微生物檢驗(yàn)技師考試診斷試題及答案
- 2024年項(xiàng)目管理考試重點(diǎn)分析試題及答案
- 項(xiàng)目管理協(xié)同工作的要素分析試題及答案
- 2025年注會考試各科試題及答案
- 突破瓶頸的證券從業(yè)資格試題及答案
- 2024年項(xiàng)目管理的科研與創(chuàng)新結(jié)合試題及答案
- 風(fēng)險(xiǎn)管理在財(cái)務(wù)中的角色試題及答案
- 2024年微生物教育的發(fā)展改革試題及答案
- 2024年項(xiàng)目管理資格考試知識試題及答案
- 2025年注會學(xué)員必做的經(jīng)典題目及試題及答案
- 2025年中考地理二輪復(fù)習(xí):中考地理常見易混易錯(cuò)知識點(diǎn)與練習(xí)題(含答案)
- 硫酸使用安全培訓(xùn)
- 政務(wù)服務(wù)窗口培訓(xùn)課件
- 2025年湖南湘潭高新集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2024年02月福建2024年興業(yè)銀行福州分行金融科技人才招考筆試歷年參考題庫附帶答案詳解
- 住宅小區(qū)綠化苗木種植協(xié)議
- MPE720軟件指令基礎(chǔ)
- 《3-6歲兒童學(xué)習(xí)與發(fā)展指南》藝術(shù)領(lǐng)域 -5-6歲
- 液壓知識培訓(xùn)課件
- 冷鏈物流建設(shè)施工方案
- 《消防安全操作規(guī)程》
評論
0/150
提交評論