2020-2021學年山東省濟寧市中考數學第一次模擬試卷及答案解析_第1頁
2020-2021學年山東省濟寧市中考數學第一次模擬試卷及答案解析_第2頁
2020-2021學年山東省濟寧市中考數學第一次模擬試卷及答案解析_第3頁
2020-2021學年山東省濟寧市中考數學第一次模擬試卷及答案解析_第4頁
2020-2021學年山東省濟寧市中考數學第一次模擬試卷及答案解析_第5頁
已閱讀5頁,還剩30頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、山東省中考數學一模試卷一、選擇題(共10小題,每小題3分,滿分30分)1 .下列圖案中,既是中心對稱又是軸對稱圖形的個數有()© v«oA. 1個B. 2個C. 3個D. 4個2 .下列事件中,屬于必然事件的是()A.任意畫一個三角形,其內角和是180°8 .某射擊運動員射擊一次,命中靶心C.在只裝了紅球的袋子中摸到白球D.擲一枚質地均勻的正方體骰子,向上的一面點數是33 .將拋物線y=x2 - 2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為()A. y= (x-1) 2+4 B. y= (x-4) 2+4 C. y= (x+2)

2、2+6 D. y= (x- 4) 2+64 .如圖,。是ABC的外接圓,/ACO=45°,則/ B的度數為(A. 30° B, 35° C. 40° D. 455 .如圖,ABC和A1BQ是以點O為位似中心的位似三角形,若 G為OC的中點,AB=4,則A1B1的長為(crA. 1B. 2C. 4 D. 86 .關于x的方程kx2+2x-1=0有實數根,則k的取值范圍是()A.k>- 1 B.k>1 且kw。C.k<- 1D.k< 1且kw07.若拋物線y= (x- m) 2+ (m+1)的頂點在第一象限,則 m的取值范圍為()A.

3、 m > 1 B. m> 0 C. m> - 1 D. Tvmv038 .已知點A (x1,y1),B(X2, v2是反比例函數y=-,的圖象上的兩點,若 X1< 0<X2,則下列結論正確的是()A. y1<0< y2 B. y20vy1 C. y1 <y2< 0 D. y2< y1v 09 .如圖,正六邊形 ABCDEF內接于。O,半彳仝為4,則這個正六邊形的邊心距OM和正的長分別為()D. 2/3,A. 2, B. 2/3,兀 C. V3,J10 .如圖,正方形 ABCD位于第一象限,邊長為 3,點A在直線y=x上,點A的橫坐標為

4、1,正I方形ABCD的邊分別平行于x軸、y軸.若雙曲線yb與正方形ABCD有公共點,則k的取值范圍為()yA. 1<k< 9 B. 2<k<34 C. 1<k<16 D. 4<kv 16二、填空題(共5小題,每小題3分,滿分15分)11 .如圖,在平面直角坐標系 xOy中,'A'B'C'由4ABC繞點P旋轉得到,則點 P的坐標 為.12 .已知方程x2+mx+3=0的一個根是1,則它的另一個根是,m的值是13 .某校學生小明每天騎自行車上學時都要經過一個十字路口,該十字路口有紅、黃、綠三色交通信號燈,他在路口遇到紅燈的概

5、率為遇到黃燈的概率為那么他遇到綠燈的概率14 .如圖,AB是。的直徑,弦 CD)± AB,垂足為E,連接AC.若/ CAB=22.5°, CD=8cm,則。O的半徑為 cm.15 .二次函數y=aX2+bx+c (a, b, c是常數,a*0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:abcv0;a- b+cv0;3a+cv0;當-1vxv3 時,y>0.其中正確的是 (把正確的序號都填上).三、解答題(共7小題,滿分55分)16 .解方程:x2-6x+5=0 (配方法)17 .如圖,AB是。的直徑,弦 CD,AB于點E,且CD=24,點M在。上

6、,MD經過圓心 O, 聯結MB.(1)若BE=8,求。的半徑;(2)若/DMB=/D,求線段OE的長.18 . 2013年,東營市某樓盤以每平方米6500元的均價對外銷售,因為樓盤滯銷,房地產開發商2015年的均價為每平方米 5265為了加快資金周轉,決定進行降價促銷,經過連續兩年下調后, 元.(1)求平均每年下調的百分率;(2)假設2016年的均價仍然下調相同的百分率,張強準備購買一套100平方米的住房,他持有 現金20萬元,可以在銀行貸款 30萬元,張強的愿望能否實現?(房價每平方米按照均價計算)k19 .如圖,RtABO的頂點A是雙曲線y=;與直線y=- x- (k+1)在第二象限的交點

7、.AB,x軸于 B,且 Saabc=2 -(1)求這兩個函數的解析式;(2)求AOC的面積.20 .在甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數字0, 1, 2,;乙袋中裝有3個完全相同的小球,分別標有數字-1, -2, 0;現從甲袋中隨機抽取一個小球,記錄標有的數字為 x,再從乙袋中隨機抽取一個小球,記錄標有的數字為 y,確定點M坐標為(x, y) .(1)用樹狀圖或列表法列舉點M所有可能的坐標;(2)求點M (x, y)在函數y=- x+1的圖象上的概率;(3)在平面直角坐標系 xOy中,。的半徑是2,求過點M (x, y)能作。的切線的概率.21 .如圖1,在RtA

8、BC中,/B=90°, BC=2AB=8,點D、E分別是邊 BC AC的中點,連接 DE,將4EDC繞點C按順時針方向旋轉,記旋轉角為(1)問題發現當a=0°時,喋=;當o=180°時,喋 =DUDU(2)拓展探究試判斷:當0 w女360時,前的大小有無變化?請僅就圖2的情形給出證明.(3)問題解決當4EDC旋轉至A, D, E三點共線時,直接寫出線段 BD的長.22 .如圖,拋物線 y=a/-5ax+4經過ABC的三個頂點,已知 BC/x軸,點 A在x軸上,點 C在y軸上,且AC=BC(1)求拋物線的對稱軸;(2)寫出A, B, C三點的坐標并求拋物線的解析式;

9、(3)探究:若點P是拋物線對稱軸上且在 x軸下方的動點,是否存在 PAB是等腰三角形?若存在,求出所有符合條件的點 P坐標;不存在,請說明理由.參考答案與試題解析一、選擇題(共10小題,每小題3分,滿分30分)1 .下列圖案中,既是中心對稱又是軸對稱圖形的個數有()© VOA. 1個B. 2個C. 3個D. 4個【考點】中心對稱圖形;軸對稱圖形.【分析】根據軸對稱圖形與中心對稱圖形的概念對各圖形分析判斷后利用排除法求解.【解答】解:第一個圖形是軸對稱圖形,又是中心對稱圖形,第二個圖形既是軸對稱圖形,不是中心對稱圖形,第三個圖形是中心對稱圖形,不是軸對稱圖形,第四個圖形是軸對稱圖形,又

10、是中心對稱圖形,綜上所述,既是軸對稱圖形又是中心對稱圖形的是第二個圖形共2個.故選B.【點評】本題考查了中心對稱圖形與軸對稱圖形,掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2 .下列事件中,屬于必然事件的是()A.任意畫一個三角形,其內角和是180°8 .某射擊運動員射擊一次,命中靶心C.在只裝了紅球的袋子中摸到白球D.擲一枚質地均勻的正方體骰子,向上的一面點數是3【考點】隨機事件.【分析】根據事件的分類判斷,必然事件就是一定發生的事件,根據定義即可解決.【解答】解:A、任

11、意畫一個三角形,其內角和是180°是必然事件,故本選項正確;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項錯誤;C、在只裝了紅球的袋子中摸到白球是不可能事件,故本選項錯誤;D、擲一枚質地均勻的正方體骰子,向上的一面點數是3是隨機事件,故本選項錯誤;故選:A.【點評】本題主要考查了必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下一定發生的事件,不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件,難度適中.3 .將拋物線y=x2 - 2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式

12、為()A. y= (x-1) 2+4 B. y= (x-4) 2+4 C. y= (x+2) 2+6 D. y= (x- 4) 2+6【考點】二次函數圖象與幾何變換.【分析】根據函數圖象向上平移加,向右平移減,可得函數解析式.【解答】解:將y=x2- 2x+3化為頂點式,得 y= (x- 1) 2+2.將拋物線y=x2 - 2x+3向上平移2個單位長度,再向右平移 3個單位長度后,得到的拋物線的解析式為 y= (x- 4) 2+4,故選:B.【點評】本題考查了二次函數圖象與幾何變換,函數圖象的平移規律是:左加右減,上加下減.4 .如圖,。是ABC的外接圓,/ACO=45°,則/ B的

13、度數為(A. 30° B. 35° C. 40° D. 45【考點】圓周角定理.【分析】先根據 OA=OC /ACO=45°可得出/OAC=45°,故可得出/AOC的度數,再由圓周角定 理即可得出結論.【解答】解:OA=OG / ACO=45 , ,/ OAC=45°,/ AOC=180)° -45° - 45° =90 °,B=3 / AOC=45°.2【點評】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等 于這條弧所對的圓心角的一半是解答此題的關鍵.5

14、 .如圖,ABC和AiBiCi是以點O為位似中心的位似三角形,若Ci為OC的中點,AB=4,則AiBi的長為()A. iB. 2C. 4 D. 8【考點】位似變換.【專題】計算題.【分析】根據位似變換的性質得到 _昔=0;,BiCi II BC,再利用平行線分線段成比例定理得到QB. OC】QC11崇=7寸,所以 太 牛 ,然后把OC'OC, AB=4代入計算即可.【解答】解:二匕為OC的中點, - OCi=-OC, ABC和 AiBiG是以點O為位似中心的位似三角形,AB 0BBiCi / BC,= , OB 0C工AB 0CAiBi=2.故選B.【點評】本題考查了位似變換: 如果兩

15、個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:兩個圖形必須是相似形; 對應點的連線都經過同一點;對應邊平行.6.關于x的方程kx2+2x-1=0有實數根,則k的取值范圍是()A. k>- 1B. k>1 且 kw。C. k<- iD. k< 1 且 kw0【考點】根的判別式.【分析】由于k的取值范圍不能確定,故應分k=0和kw。兩種情況進行解答.【解答】解:(1)當k=0時,6x+9=0,解得x4;(2)當kW0時,此方程是一元二次方程,;關于x的方程kx2+2x - 1=0有實數根, =2

16、2 4kx ( 1) >0,解得 k> - 1,由(1)、(2)得,k的取值范圍是k>- 1.故選:A.【點評】本題考查了根的判別式,解答此題時要注意分k=0和kW0兩種情況進行討論.7.若拋物線y= (x- m) 2+ (m+1)的頂點在第一象限,則 m的取值范圍為()A. m > 1 B. m> 0 C. m>T D. Tvmv0【考點】二次函數的性質.【專題】壓軸題.【分析】利用y=ax2+bx+c的頂點坐標公式表示出其頂點坐標,根據頂點在第一象限,所以頂點的橫坐標和縱坐標都大于 0列出不等式組.【解答】解:由 y= (x m) 2+ (m+1) =x

17、2 2mx+ (m2+m+1),根據題意,/,4- C-2m) &解不等式(1),得m>0,解不等式(2),得m> - 1;所以不等式組的解集為 m>0.故選B.【點評】本題考查頂點坐標的公式和點所在象限的取值范圍,同時考查了不等式組的解法,難度較大.38.已知點A (xi, yi) , B (x2, v2是反比例函數y=-'的圖象上的兩點,若 xi< 0<x2,則下列結論正確的是()A. y1<0< y2 B. y2< 0<y1 C. y1 <y2< 0 D. y2< y1< 0【考點】反比例函數圖

18、象上點的坐標特征.【專題】計算題.33【分析】根據反比例函數圖象上點的坐標特征得到yi=-y2=-然后利用xi0x2即可E2得到yi與y2的大小.一一一廄入八,【解答】解:- A (xi, yi) , B (x2, y2)是反比例函數y=-1的圖象上的兩點,, 衛 衛 yi= 一,y2=- v ,K 1翼2 xi V 0< x2,故選B.【點評】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=3(k為常數,kW0)的圖象是雙曲線,圖象上的點(x, y)的橫縱坐標的積是定值 k,即xy=k.9.如圖,正六邊形 ABCDEF內接于。O,半彳仝為4,則這個正六邊形的邊心距 OM和筋的長分

19、別為()一一八一一廠 一廠2兀一 一廠邛A. 2,B. 2/3,兀 C. y 3,D. 2 之,-【考點】正多邊形和圓;弧長的計算.【專題】壓軸題.【分析】正六邊形的邊長與外接圓的半徑相等,構建直角三角形,利用直角三角形的邊角關系即可求出OM,再利用弧長公式求解即可.【解答】解:連接OB,.OB=4,.BM=2,.OM=2 叵,G 6。兀 xq 4亂一 ISO = 3,故選D.【點評】本題考查了正多邊形和圓以及弧長的計算,將扇形的弧長公式與多邊形的性質相結合, 構思巧妙,利用了正六邊形的性質,是一道好題.10.如圖,正方形 ABCD位于第一象限,邊長為 3,點A在直線y=x上,點A的橫坐標為1

20、,正方形ABCD的邊分別平行于x軸、y軸.若雙曲線y,與正方形ABCD有公共點,則k的取值范圍【考點】反比例函數與一次函數的交點問題.【專題】壓軸題.【分析】先根據題意求出A點的坐標,再根據 AB=BC=3, AB、BC分別平行于x軸、y軸求出B、C兩點的坐標,再根據雙曲線 y曰(kW0)分別經過A、C兩點時k的取值范圍即可.【解答】解:點 A在直線y=x上,其中A點的橫坐標為1,則把x=1代入y=x解得y=1,則A的 坐標是(1, 1),.AB=BC=3,C點的坐標是(4, 4),k,當雙曲線y=7經過點(1, 1)時,k=1;當雙曲線yq經過點(4, 4)時,k=16,因而 1WkW16.

21、故選:C.【點評】本題主要考查了反比例函數,用待定系數法求一次函數的解析式,解此題的關鍵是理解題意進而求出k的值.、填空題(共5小題,每小題3分,滿分15分)11.如圖,在平面直角坐標系 xOy中,2A B'C'由4ABC繞點P旋轉得到,則點P的坐標為 _色1).【考點】坐標與圖形變化 -旋轉.2k+b=l【分析】連接AA; CC',線段AA'、CC'的垂直平分線的交點就是點P.【解答】解:連接AA'、CC',作線段AA'的垂直平分線MN,作線段CC'的垂直平分線EF, 直線MN和直線EF的交點為巳點P就是旋轉中心.直線M

22、N為:x=1,設直線CC為y=kx+b,由題意:EF±CC',經過 CC'中點(*,直線 EF為 y= - 3x+2, 1 1,直線 CC 為 y=7x+,;直線P (1 , T).故答案為(1, - 1)【點評】本題考查旋轉的性質,掌握對應點連線段的垂直平分線的交點就是旋轉中心,是解題的關鍵.12 .已知方程x2+mx+3=0的一個根是1,則它的另一個根是3 , m的值是 -4 .【考點】根與系數的關系;一元二次方程的解.【分析】利用一元二次方程的根與系數的關系,兩根的和是- m,兩個根的積是 3,即可求解.【解答】解:設方程的另一個解是a,則1+a=- m, 1X

23、a=3,解得:m= - 4, a=3.故答案是:3, - 4.【點評】本題考查了一元二次方程的根與系數的關系,正確理解根與系數的關系是關鍵.13 .某校學生小明每天騎自行車上學時都要經過一個十字路口,該十字路口有紅、黃、綠三色交通信號燈,他在路口遇到紅燈的概率為 ,遇到黃燈的概率為 ,,那么他遇到綠燈的概率為 _-1【考點】概率的意義.【分析】根據在路口遇到紅燈、黃燈、綠燈的概率之和是1,再根據在路口遇到紅燈的概率為遇到黃燈的概率為即可求出他遇到綠燈的概率.【解答】解:.經過一個十字路口,共有紅、黃、綠三色交通信號燈,在路口遇到紅燈、黃燈、綠燈的概率之和是 1,在路口遇到紅燈的概率為,遇到綠燈

24、的概率為1-q故答案為:n種可能,而且這【點評】此題考查了概率的意義,用到的知識點是概率公式,如果一個事件有 些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P子14 .如圖,AB是。的直徑,弦 CD,AB,垂足為E,連接AC.若/ CAB=22.5°, CD=8cm,則。O的半徑為 4 .': cm.B【考點】垂徑定理;等腰直角三角形;圓周角定理.【專題】計算題.【分析】連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到 E為CD的中點,即CE=DE 由OA=OC利用等邊對等角得到一對角相等,確定出三角形 COE為等腰直角三角形,求出 OC的 長,即為圓

25、的半徑.【解答】解:連接 OC,如圖所示:.AB是。的直徑,弦 CD)± AB,1 , CE=DE=:CD=4cm,.OA=OC, .Z A=ZOCA=22.5°, / COE為AOC的外角, / COE=45°,.COE為等腰直角三角形,.OC=/2CE=4/2cm,故答案為:4 .':A【點評】此題考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是 解本題的關鍵.15.二次函數y=aW+bx+c (a, b, c是常數,a*0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:abcv0;a- b+cv0;3a+cv

26、0;當-1vxv3 時,y>0.其中正確的是(把正確的序號都填上).X=l【考點】二次函數圖象與系數的關系.【專題】壓軸題.【分析】首先根據二次函數圖象開口方向可得a<0,根據圖象與y軸交點可得c>0,再根據二I u I次函數的對稱軸x=-d=1,結合a的取值可判定出b>0,根據a、b、c的正負即可判斷出 的 2a2正反;把x=-1代入函數關系式 y=ax+bx+c中得y=a-b+c,再結合圖象判斷出 的正反;把b=-2a代入a-b+c中即可判斷出 的正誤;利用圖象可以直接看出 的正誤.【解答】解:根據圖象可得:a< 0, c>0,b=- 2a,.a<

27、0, .b>0, abc< 0,故正確;2把x= - 1代入函數關系式 y=ax+bx+c中得:y=a- b+c,由圖象可以看出當 x=- 1時,y<0, -a - b+c< 0,故正確;- b=- 2a,a- (- 2a) +c< 0,即:3a+cv0,故正確;由圖形可以直接看出 錯誤故答案為:【點評】此題主要考查了二次函數圖象與系數的關系,關鍵是熟練掌握 二次項系數a 決定拋物線的開口方向,當 a>0時,拋物線向上開口;當 a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當 a與b同號時(即ab>0),對稱軸在y軸左

28、; 當a 與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)常數項c決定拋物線與y軸交點,拋物線與y 軸交于(0, c)三、解答題(共7 小題,滿分55 分)16 .解方程:x2 - 6x+5=0 (配方法)【考點】解一元二次方程- 配方法【專題】配方法【分析】利用配方法解方程配方法的一般步驟:( 1 )把常數項移到等號的右邊;( 2)把二次項的系數化為1;( 3)等式兩邊同時加上一次項系數一半的平方【解答】解:由原方程移項,得x2- 6x= - 5,等式兩邊同時加上一次項系數一半的平方32得x2- 6x+32=- 5+32,即(x- 3) 2=4,,x二3±2,,原

29、方程的解是:xi=5, X2=1.【點評】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1, 一次項的系數是 2的倍數.17 .如圖,AB是。的直徑,弦 CD,AB于點E,且CD=24,點M在。上,MD經過圓心 O, 聯結MB.(1)若BE=8,求。的半徑;(2)若/DMB=/D,求線段OE的長.B【考點】垂徑定理;勾股定理;圓周角定理.【分析】(1)根據垂徑定理求出 DE的長,設出半徑,根據勾股定理,列出方程求出半徑;(2)根據OM=OB,證出/ M=/B,根據/ M=/ D,求出/ D的度數,根據銳角三角函數求出OE

30、的長.【解答】解:(1)設。的半徑為x,則OE=x- 8,. CD=24,由垂徑定理得, DE=12,在 RtODE中,OD2=DE2+OEx2= (x-8) 2+122,解得:x=13.(2)OM=OB,M=Z B,DOE=2/ M,又/ M=Z D,,/ D=30°,在 RtOED中,. DE=12, /D=30°, -OE=4. ;.【點評】本題考查的是垂徑定理、勾股定理和圓周角定理的綜合運用,靈活運用定理求出線段的長度、列出方程是解題的關鍵,本題綜合性較強,鍛煉學生的思維能力.18. 2013年,東營市某樓盤以每平方米6500元的均價對外銷售,因為樓盤滯銷,房地產開

31、發商為了加快資金周轉,決定進行降價促銷,經過連續兩年下調后,2015年的均價為每平方米 5265元.(1)求平均每年下調的百分率;(2)假設2016年的均價仍然下調相同的百分率,張強準備購買一套100平方米的住房,他持有現金20萬元,可以在銀行貸款 30萬元,張強的愿望能否實現?(房價每平方米按照均價計算)【考點】一元二次方程的應用.【專題】增長率問題.【分析】(1)設平均每年下調的百分率為x,根據題意列出方程,求出方程的解即可得到結果;(2)如果下調的百分率相同,求出 2016年的房價,進而確定出100平方米的總房款,即可做出 判斷.【解答】解:(1)設平均每年下調的百分率為x,根據題意得:

32、6500 (1 -x) 2=5265,解得:X1=0.1=10%, X2=1.9 (舍去),則平均每年下調的百分率為10%;(2)如果下調的百分率相同,2016年的房價為5265 X (1 - 10%) =4738.5 (元/米2),則100平方米的住房總房款為 100X4738.5=473850=47.385 (萬元),,20+30>47.385,,張強的愿望可以實現.【點評】此題考查了一元二次方程的應用,找出題中的等量關系是解本題的關鍵.19.如圖,RtABO的頂點A是雙曲線y上與直線y=- x- (k+1)在第二象限的交點.AB,x軸x于 B,且 Saabct-;!; .(1)求這

33、兩個函數的解析式;【分析】(1)欲求這兩個函數的解析式,關鍵求k值.根據反比例函數性質,k絕對值為3且為負數,由此即可求出 k;(2)由函數的解析式組成方程組,解之求得A C的坐標,然后根據 SAacc=SAcda+Sacdc即可求出.【解答】解:(1)設A點坐標為(x, y),且xv 0, y>0,則 SaABC=|jBC|?|BA|聆? ( x)為三, N2aZ,xy= 3,° k即 xy=k, .k=- 3.人-"I,、,,3,所求的兩個函數的解析式分別為y=-一,y=- x+2;(2)由 y=- x+2,令 x=0,得 y=2.,直線y= - x+2與y軸的交

34、點D的坐標為(0, 2), A、C在反比例函數的圖象上,產-y+2尸-,交點 A為(1, 3) , C為(3, - 1),qX2X (3+1) =4.【點評】此題首先利用待定系數法確定函數解析式,然后利用解方程組來確定圖象的交點坐標, 及利用坐標求出線段和圖形的面積.20.在甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數字 0, 1, 2,;乙袋中裝有3個完全相同的小球,分別標有數字-1, -2, 0;現從甲袋中隨機抽取一個小球,記錄標有的數字為 x,再從乙袋中隨機抽取一個小球,記錄標有的數字為 y,確定點M坐標為(x,y) .(1)用樹狀圖或列表法列舉點 M所有可能的坐標;

35、(2)求點M (x, y)在函數y=- x+1的圖象上的概率;(3)在平面直角坐標系 xOy中,。的半徑是2,求過點M (x, y)能作。的切線的概率.【考點】列表法與樹狀圖法;一次函數圖象上點的坐標特征;切線的性質.【專題】計算題.【分析】(1)用樹狀圖法展示所有 9種等可能的結果數;(2)根據一次函數圖象上點的坐標特征,從9個點中找出滿足條件的點,然后根據概率公式計算;(3)利用點與圓的位置關系找出圓上的點和圓外的點,由于過這些點可作算出過點M (x, y)能作。的切線的概率.【解答】解:(1)畫樹狀圖:。的切線,則可計0I工小小小J -2 0 C 口 Q -1 4 a共有9種等可能的結果

36、數,它們是:(0, - 1) , ( 0, - 2) , ( 0, 0) , ( 1, - 1) , ( 1,-2) , (1,0), ( 2, 1) , (2, -2) , ( 2, 0);(2)在直線y=-x+1的圖象上的點有:(1,0), (2, - 1),|2所以點M (x, y)在函數y=- x+1的圖象上的概率=r;(3)在。上的點有(0, - 2) , ( 2, 0),在。外的點有(1 , - 2) , ( 2, - 1) , (2, -2),所以過點M (x, y)能作。的切線的點有5個,所以過點M (x, y)能作OO的切線的概率=-.【點評】本題考查了列表法與樹狀圖法:利用

37、列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件 A或B的結果數目m,求出概率.也考查了一次函數圖象上點的坐標特征和 切線的性質.21.如圖1,在RtABC中,/B=90°, BC=2AB=8,點D、E分別是邊 BC AC的中點,連接 DE,a.將EDC繞點C按順時針方向旋轉,記旋轉角為(1)問題發現當"=00時,1鳴當作180。時,隹金(2)拓展探究AE試判斷:當0 w之360時,一1的大小有無變化?請僅就圖 2的情形給出證明.(3)問題解決當 EDC旋轉至A, D, E三點共線時,直接寫出線段 BD的長.【考點】幾何變換綜合題.【專題】壓軸題.【分析】(1)

38、當a=0°時,在RtABC中,由勾股定理,求出AC的值是多少;然后根據點D、E分別是邊BC、AC的中點,分別求出 AE、BD的大小,即可求出言的值是多少./=180°時,可得AB”DE,然后根據AC_BCAE-BD,您 ,求出面的值是多少即可.的值(2)首先判斷出/ECA=Z DCB,再根據亶學衛5,判斷出EC2 DCB,即可求出第DC BC 2BD是多少,進而判斷出而的大小沒有變化即可.(3)根據題意,分兩種情況: 點A, D, E所在的直線和BC平行時;點A, D, E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【解答】解:(1)當”=00時,

39、RtABC 中,/B=90°, 1- ac=7aB2+BC2=V(82) 2+S2=lVs, 點D、E分別是邊 BC、AC的中點,. 四二4西2二2怖, BD=8-5-2=4,.運送叵立BD 42當=180° 時,可得 AB/ DE,AC BC, -AE BD'BD BC 82故答案為:限尊(2)如圖2,AE當0。w女360。時,黑的大小沒有變化,/ ECD=Z ACB,/ ECA=/ DCB,v.feC AC V5又- -,DC BC 2 5, ECA DCB,鯉口與BD DC 2. AC=4 . CD=4, CD± AD,ADc2_CD%/2 _ 4 2二的0 16 =8 ,- AD=BC, AB=DC/B=90°,,四邊形ABCD是矩形,.BD=AO4V5.如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,圖4. AC=4 ,二,CD=4, CD)± AD,"口=7虹2 -卬制(料),-/二如-16 二8 , 點D、E分別是邊 BC、AC的中點, DE=AB=vx(8-2) =4x4=2, .AE=AD- DE=8- 2=6,由(2),可得BD-2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論