八年級數學知識點總結_第1頁
八年級數學知識點總結_第2頁
八年級數學知識點總結_第3頁
八年級數學知識點總結_第4頁
八年級數學知識點總結_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、八年級數學(上)知識點人教版八年級上冊主要包括三角形、全等三角形、軸對稱、整式的乘除與分解因式和分式五個章節的內容。第十一章 三角形一知識框架 二知識概念1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。6.三角形的穩定性:三角形的形狀是固定

2、的,三角形的這個性質叫三角形的穩定性。6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。11.公式與性質三角形的內角和:三角形的內角和為180°三角形外角的性質:性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。性質2:三角形的一個外角大于任何一個和它不相鄰的內角。多邊形內角和公式:n邊形的內

3、角和等于(n-2)·180°多邊形的外角和:多邊形的內角和為360°。多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。(2)n邊形共有條對角線。三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。第十二章 全等三角形一知識框架二知識概念1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。2全等三角形的性質: 全等三角形的

4、對應角相等、對應邊相等。 3.三角形全等的判定公理及推論有: (1)“邊角邊”簡稱“SAS” (2)“角邊角”簡稱“ASA” (3)“邊邊邊”簡稱“SSS” (4)“角角邊”簡稱“AAS” (5)斜邊和直角邊相等的兩直角三角形(HL)。4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),、回顧三角形判定,搞清我們還需要什么,、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).在學習三角形的全等時,教

5、師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。第十三章 軸對稱一知識框架二知識概念1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。2.性質: (1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。(2)角平分線上的點到角兩邊距離相等。(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。(

6、5)軸對稱圖形上對應線段相等、對應角相等。3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。5.等腰三角形的判定:等角對等邊。6.等邊三角形角的特點:三個內角相等,等于60°,7.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。 有一個角是60°的等腰三角形是等邊三角形 有兩個角是60°的三角形是等邊三角形。8.直角三角形中,30°角所對的直角邊等于斜邊的一半。9直角三角形斜邊上的中線等于斜邊的一半。本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中

7、的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。第十四章 整式的乘除與分解因式1.同底數冪的乘法法則: (m,n都是正數)2. 冪的乘方法則:(m,n都是正數) 3. 整式的乘法(1) 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數作為積的一個因式。(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。(3)多項式與多項式相乘多項式與多項式相乘,先用一個多

8、項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。4平方差公式: 5完全平方公式: 6. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a0,m、n都是正數,且m>n).在應用時需要注意以下幾點:法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a0.任何不等于0的數的0次冪等于1,即,如,(-2.50=1),則00無意義.任何不等于0的數的-p次冪(p是正整數),等于這個數的p的次冪的倒數,即( a0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如,運算要注

9、意運算順序. 7整式的除法單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式;多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;(4)因式分解的最后結果必須是幾個

10、整式的乘積,否則不是因式分解;(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多準備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。八年級數學(下)知識點人教版八年級下冊主要包括了二次根式、勾股定理、平行四邊形、一次函數、數據的分析五章內容。第十六章 二次根式一知識框架二知識概念二次根式:一般地,形如(a0)的代數式叫做二次根式。當a0時,a表示a的算數平方根,其中0=0對于本章內容,教學中應達到以

11、下幾方面要求:1. 理解二次根式的概念,了解被開方數必須是非負數的理由;2. 了解最簡二次根式的概念;3. 理解并掌握下列結論:1)是非負數;(2);(3);4. 掌握二次根式的加、減、乘、除運算法則,會用它們進行有關實數的簡單四則運算;5. 了解代數式的概念,進一步體會代數式在表示數量關系方面的作用。第十八章  勾股定理 一.知識框架1. 勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2。勾股定理逆定理:如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個三角形是直角三角形。 2.定理:經過證明被確認正確的命題叫做定理。 3.我們把題設

12、、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 勾股定理是直角三角形具備的重要性質。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題。可以通過自主學習的發展體驗獲取數學知識的感受。第十八章    平行四邊形 一知識框架 二知識概念1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。 2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。 3.平行四邊形的判定 .兩組對邊分別相等的四邊形是平行四邊形.對角線互相平分

13、的四邊形是平行四邊形; .兩組對角分別相等的四邊形是平行四邊形; 一組對邊平行且相等的四邊形是平行四邊形。 4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。 5.直角三角形斜邊上的中線等于斜邊的一半。6.矩形的定義:有一個角是直角的平行四邊形。7.矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。8.矩形判定定理: .有一個角是直角的平行四邊形叫做矩形。 .對角線相等的平行四邊形是矩形。 .有三個角是直角的四邊形是矩形。9.菱形的定義 :鄰邊相等的平行四邊形。10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。 11.菱形的判定定理

14、:.一組鄰邊相等的平行四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。 四條邊相等的四邊形是菱形。12.S菱形=1/2×ab(a、b為兩條對角線) 13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。14.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。 15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。 16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。 17.直角梯形的定義:有一個角是直角的梯形18.等腰梯形的定義:兩腰相等的梯形。19.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩

15、條對角線相等。 20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。 本章內容是對平面上四邊形的分類及性質上的研究,要求學生在學習過程中多動手多動腦,把自己的發現和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結四邊形的特點,這樣有利于學生對知識的把握。第十九章 一次函數一.知識框架二知識概念(1)(3)(2)(1)(2)(3)1.一次函數:若兩個變量x,y間的關系式可以表示成y=kx+b(k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。2.正比例函數一般式:y=kx(k0),其圖象是經過原點(0,0)的一條直線。3.正比例

16、函數y=kx(k0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。4.已知兩點坐標求函數解析式:待定系數法一次函數是初中學生學習函數的開始,也是今后學習其它函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變量,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重于理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。第二十章 數據的分析 一知識框架二知識概念1.加權平均數:加權平均數的計算公式。 權的理解:反映了某個數據在整個數據中的重要程度。2.中位數:將一組數據按照由小到大(或由大到小)的順序排列,如果數據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論