廣東省惠州市仲愷高新區(qū)瀝林華科學(xué)校屆九年級(jí)數(shù)學(xué)上學(xué)期期中試卷(含解析)新人教版_第1頁(yè)
廣東省惠州市仲愷高新區(qū)瀝林華科學(xué)校屆九年級(jí)數(shù)學(xué)上學(xué)期期中試卷(含解析)新人教版_第2頁(yè)
廣東省惠州市仲愷高新區(qū)瀝林華科學(xué)校屆九年級(jí)數(shù)學(xué)上學(xué)期期中試卷(含解析)新人教版_第3頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2021學(xué)年廣東省惠州市仲愷高新區(qū)瀝林華科學(xué)校九年級(jí)上期中數(shù)學(xué)試卷一、選擇題每題 5分,共25分1. 關(guān)于二次函數(shù) y=3 x - 2 2+6,以下說法正確的選項(xiàng)是A.開口方向向下 B .頂點(diǎn)坐標(biāo)為-2, 6C.對(duì)稱軸為y軸D .圖象是一條拋物線2. 方程x2+x=2,那么以下說法中,正確的選項(xiàng)是A.方程兩根和是 1B.方程兩根積是 2C.方程兩根和是-1 D.方程兩根積比兩根和大 23. 拋物線y=2 x-3 2可以看作是由拋物線 y=2x2按以下何種變換得到的A.向左平移3個(gè)單位長(zhǎng)度B .向右平移3個(gè)單位長(zhǎng)度C.向上平移3個(gè)單位長(zhǎng)度D .向下平移3個(gè)單位長(zhǎng)度4. 如下圖的圖形中,

2、既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是5.元二次方程x2+2x+3=0的根的情況是A.有兩個(gè)不相等的實(shí)數(shù)根B .有兩個(gè)相等的實(shí)數(shù)根C.無實(shí)數(shù)根 D .無法確定 二、填空題每空 5分,共計(jì)25分6 .一元二次方程 4x=x2 - 8的一般形式是 .7.拋物線y=2 x-3 2+1的頂點(diǎn)坐標(biāo)是 .&方程x2 - 2x+k=0有兩個(gè)相等的實(shí)數(shù)根,那么k=.9 .假設(shè)X1, X2是一元二次方程 x2 - 3x - 4=0的兩根,那么 X1+X2=.10. 將拋物線y=x2的圖象向左平移 2個(gè)單位,再向下平移 3個(gè)單位,得到的拋物線是三、作圖題11. 以點(diǎn)A為旋轉(zhuǎn)中心,將 ABC按逆時(shí)針方向旋轉(zhuǎn) 9

3、0°,畫出旋轉(zhuǎn)后的 A1BC1.四、解答題第11小題20分,其余各小題每題 10分,共計(jì)60 分12. 按要求解以下方程.21X- 3 =162X2- 4x=5 配方法3X2- 4x - 5=0 公式法4X2- 5x=0 因式分解法13. xi, X2是方程x2- 2x -仁0的兩根,試求以下代數(shù)式的值.1 x1+x2x1?x2;2 x1- x22.14. 當(dāng)m為何值時(shí),關(guān)于 x的一元二次方程2m+1 x2+4mx+2n- 3=0.1 有兩個(gè)不相等的實(shí)數(shù)根;2有兩個(gè)相等的實(shí)數(shù)根; 3沒有實(shí)數(shù)根.15. 惠州市近年來經(jīng)濟(jì)開展迅速,某生產(chǎn)企業(yè)在2021年到 201 7年間的銷售額從 20

4、萬元增 加到 80 萬元.假設(shè)這兩年銷售額的年平均增長(zhǎng)率相同,根據(jù)題意求;1 這兩年銷售額的年平均增長(zhǎng)率為多少? 2 假設(shè)年平均增長(zhǎng)率保持不變,那么2021 年的銷售額為多少?16. 某體育用品商店購(gòu)進(jìn)一批滑板,每件進(jìn)價(jià)為100元,售價(jià)為 1 30元,每星期可賣出 80 件.商家決定降價(jià)促銷,根據(jù)市場(chǎng)調(diào)查,每降價(jià) 5 元,每星期可多賣出 20 件. 1 求商家降價(jià)前每星期的銷售利潤(rùn)為多少元?2降價(jià)后,商家要使每星期的銷售利潤(rùn)最大,應(yīng)將售價(jià)定為多少元?最大銷售利潤(rùn)是多少?2021-2021學(xué)年廣東省惠州市仲愷高新區(qū)瀝林華科學(xué)校九年級(jí)上期中數(shù)學(xué)試卷參考答案與試題解析一、選擇題每題 5分,共25分1

5、. 關(guān)于二次函數(shù) y=3 x - 2 2+6,以下說法正確的選項(xiàng)是A.開口方向向下 B .頂點(diǎn)坐標(biāo)為-2, 6C.對(duì)稱軸為y軸D .圖象是一條拋物線【考點(diǎn)】二次函數(shù)的性質(zhì).【分析】由拋物線解析式可求得開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo),可求得答案. 【解答】解:2 y=3 x - 2 +6,拋物線開口向上,對(duì)稱軸為x=2,頂點(diǎn)坐標(biāo)為2, 6, A B、C都不正確,二次函數(shù)的圖象為一條拋物線, D正確, 應(yīng)選D.2. 方程x2+x=2,那么以下說法中,正確的選項(xiàng)是A.方程兩根和是 1B.方程兩根積是 2C.方程兩根和是-1 D.方程兩根積比兩根和大 2 【考點(diǎn)】根與系數(shù)的關(guān)系.【分析】先把方程化為一般式

6、,然后根據(jù)根與系數(shù)的關(guān)系進(jìn)行判斷.【解答】解: x2+x - 2=0,兩根之和為-1,兩根之積為-2. 應(yīng)選C.3. 拋物線y=2 x-3 2可以看作是由拋物線 y=2x2按以下何種變換得到的A.向左平移3個(gè)單位長(zhǎng)度B .向右平移3個(gè)單位長(zhǎng)度C.向上平移3個(gè)單位長(zhǎng)度D .向下平移3個(gè)單位長(zhǎng)度【考點(diǎn)】二次函數(shù)圖象與幾何變換.【分析】拋物線的平移可看作頂點(diǎn)的平移,比擬前后兩個(gè)拋物線的頂點(diǎn)坐標(biāo)即可.【解答】 解:拋物線y=2 x- 3 2頂點(diǎn)坐標(biāo)為3, 0,拋物線y=2x2頂點(diǎn)坐標(biāo)為0, 0,拋物線y=2 x - 3 2可以看作由拋物線 y=2x2向左平移3個(gè)單位長(zhǎng)度得到的, 應(yīng)選A.4.如下圖的圖

7、形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是【考點(diǎn)】中心對(duì)稱圖形;軸對(duì)稱圖形.【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【解答】 解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形故錯(cuò)誤; B不是軸對(duì)稱圖形,是中心對(duì)稱圖形故錯(cuò)誤; C是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故正確; D是軸對(duì)稱圖形,不是中心對(duì)稱圖形故錯(cuò)誤.應(yīng)選C.5. 元二次方程x2+2x+3=0的根的情況是A.有兩個(gè)不相等的實(shí)數(shù)根B .有兩個(gè)相等的實(shí)數(shù)根C.無實(shí)數(shù)根 D .無法確定【考點(diǎn)】根的判別式.【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出=-8 V 0,由此即可得出結(jié)論.2 2【解答】 解:在方程 x +2x+3=0 中, =2 - 4

8、X 1X 3=- 8V0,該方程無解.應(yīng)選C.二、填空題每空 5分,共計(jì)25分6. 元二次方程 4x=x2 - 8的一般形式是 x2 - 4x - 8=0 .【考點(diǎn)】一元二次方程的一般形式.【分析】方程整理為一般系數(shù)即可.【解答】 解:方程整理得:x2- 4x - 8=0,故答案為:x2- 4x - 8=07. 拋物線y=2 x-3 2+1的頂點(diǎn)坐標(biāo)是 3, 1.【考點(diǎn)】二次函數(shù)的性質(zhì).【分析】拋物線解析式為頂點(diǎn)式,可直接求出頂點(diǎn)坐標(biāo).【解答】解:由拋物線解析式可知,拋物線頂點(diǎn)坐標(biāo)為3, 1,故答案為:3, 1.&方程x2 - 2x+k=0有兩個(gè)相等的實(shí)數(shù)根,那么k= 1 .【考點(diǎn)】根

9、的判別式.【分析】由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,列出關(guān)于k的方程,求出方程的解即可得到 k的值.【解答】 解:方程x2- 2x+k=0有兩個(gè)相等的實(shí)數(shù)根, =b2 - 4ac=4 - 4k=0,解得:k=1.故答案為:1 .假設(shè)X1, X2是一元二次方程 x2 - 3x - 4=0的兩根,那么 X1+X2= 3 .【考點(diǎn)】根與系數(shù)的關(guān)系.【分析】利用根與系數(shù)的關(guān)系求解.【解答】 解:根據(jù)題意得X1+X2=3.故答案為3.10將拋物線 yX的圖象向左平移2個(gè)單位,再向下平移 3個(gè)單位,得到的拋物線是y2(x+2)- 3【考點(diǎn)】二次函數(shù)圖象與幾何變換.【分析】根據(jù)“左加右減、上加

10、下減的原那么進(jìn)行解答即可.【解答】 解:將拋物線y=x 2(2) x - 4x+4=5+4,即(x - 2) =9, x - 2=± 3,解得:x=5或x= - 1;的圖象向左平移2個(gè)單位所得直線解析式為:y= (x+2) 2;再向下平移3個(gè)單位為:y (x+2) 2- 3.故答案為:y (x+2) 2- 3.三、作圖題11. 以點(diǎn)A為旋轉(zhuǎn)中心,將 ABC按逆時(shí)針方向旋轉(zhuǎn) 90°,畫出旋轉(zhuǎn)后的 ABG.【考點(diǎn)】作圖-旋轉(zhuǎn)變換.【分析】 首先確定A B、C三點(diǎn)以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針方向旋轉(zhuǎn) 90°后對(duì)應(yīng)點(diǎn)位置, 再連接即可.【解答】解:如下圖: AiBiCi即為所

11、求.四、解答題(第11小題20分,其余各小題每題 10分,共計(jì)60分)12. 按要求解以下方程.2(1) (x- 3) =16(2) x2- 4x=5 (配方法)(3) x2- 4x - 5=0 (公式法)(4) x2- 5x=0 (因式分解法)【考點(diǎn)】 解一元二次方程-因式分解法;解一元二次方程 -直接開平方法;解一元二次方程-配方法;解一元二次方程 -公式法.【分析】(1)直接開平方法求解可得;(2 )根據(jù)配方法法步驟依次進(jìn)行即可得;(3 )套用求根公式即可得;(4)提取公因式后求解可得.【解答】 解:(1) x- 3=± 4,即 x - 3=4 或 x - 3=- 4,解得:x

12、=7或x= - 1;(3) T a=1, b= - 4, c= - 5, =16+4X 1 x 5=36> 0,Q士 6x=2即 x=5 或 x= - 2;(4) x (x- 5) =0, x=0 或 x- 5=0, 解得:x=0或x=5 .13. xi, X2是方程x2- 2x -仁0的兩根,試求以下代數(shù)式的值.(1 ) ( Xi+X2)(Xi?X2);2(2) (xi - X2).【考點(diǎn)】根與系數(shù)的關(guān)系.【分析】根據(jù)根與系數(shù)的關(guān)系可得出Xi+X2=2、Xi?X2=- 1.(1 )將x計(jì)X2=2、xi?X2=- 1代入即可得出結(jié)論;(2)利用完全平方公式將(xi- X2) 2變形為十七

13、護(hù)-4xi?X2,代入數(shù)據(jù)即可得出結(jié)論. 【解答】 解:T Xi, X2是方程X2- 2x -仁0的兩根, Xi+X2 = 2, Xi?X2= - 1 .(1) (Xi+X2)(Xi?X2)=2+ (- 1)=1.(2) (Xi - X2) 2=?衛(wèi)+左2 )'- 4Xi ?X2=22 - 4X(- 1) =8.14. 當(dāng)m為何值時(shí),關(guān)于 x的一元二次方程(2m+1) x2+4mx+2m- 3=0.(1) 有兩個(gè)不相等的實(shí)數(shù)根;(2 )有兩個(gè)相等的實(shí)數(shù)根;(3)沒有實(shí)數(shù)根.【考點(diǎn)】根的判別式.【分析】先求出的值,再根據(jù)根的判別式的內(nèi)容判斷即可.2【解答】 解:(2m+1 x +4mx+

14、2m- 3=0, = (4m) 2 - 4 ( 2m+1) ( 2m- 3) =16m+1212m+iz 0 時(shí),m 77,z(1 )當(dāng)厶> 0時(shí),有兩個(gè)不相等的實(shí)數(shù)根,即當(dāng)m>-魯且 說-g時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2) 當(dāng)厶=0時(shí),有兩個(gè)不相等的實(shí)數(shù)根,即當(dāng)m=-二時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;(3) 當(dāng)厶< 0時(shí),沒有實(shí)數(shù)根,即當(dāng) m<-時(shí),方程沒有實(shí)數(shù)根.15. 惠州市近年來經(jīng)濟(jì)開展迅速,某生產(chǎn)企業(yè)在2021年到2021年間的銷售額從 20萬元增加到80萬元假設(shè)這兩年銷售額的年平均增長(zhǎng)率相同,根據(jù)題意求;(1) 這兩年銷售額的年平均增長(zhǎng)率為多少?(2) 假設(shè)

15、年平均增長(zhǎng)率保持不變,那么2021年的銷售額為多少?【考點(diǎn)】一元二次方程的應(yīng)用.【分析】(1 )經(jīng)過兩次增長(zhǎng),求年平均增長(zhǎng)率的問題, 應(yīng)該明確原來的基數(shù),增長(zhǎng)后的結(jié)果.設(shè) 這兩年的年平均增長(zhǎng)率為x,那么經(jīng)過兩次增長(zhǎng)以后銷售額 20( 1+x) 2萬元,即可列方程求解;(2)利用求得的百分率,進(jìn)一步求得2021年年底銷售額即可.【解答】 解:(1)設(shè)這兩年的銷售額的年平均增長(zhǎng)率為x,由題意得,20x( 1+x) 2=80.解得:X1=1=100% X2=-3 (舍去).答:兩年銷售額的年平均增長(zhǎng)率為100%(2) 2021 年的銷售額為:80 (1 + 100%) =160 (萬元).答:假設(shè)年平均增長(zhǎng)率保持不變,那么2021年的銷售額為160萬元.16某體育用品商店購(gòu)進(jìn)一批滑板,每件進(jìn)價(jià)為100元,售價(jià)為130元,每星期可賣出 80件.商家決定降價(jià)促銷,根據(jù)市場(chǎng)調(diào)查,每降價(jià)5元,每星期可多賣出 20件.(1 )求商家降價(jià)前每星期的銷售利潤(rùn)為多少元?(2)降價(jià)后,商家要使每星期的銷售利潤(rùn)最大,應(yīng)將售價(jià)定為多少元?最大銷售利潤(rùn)是多 少?【考點(diǎn)】二次函數(shù)的應(yīng)用.【分析】(1)原每天利潤(rùn)為 130 - 100,每星期可賣出80件,那么X 80=2400元.130- k(2)設(shè)將售價(jià)定為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論